4.5 Article

Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijpvp.2012.07.012

Keywords

Carbon nanotube; Timoshenko beam; Elastic foundation; Free vibrations; Buckling load

Ask authors/readers for more resources

This study deals with free vibrations and buckling analysis of nanocomposite Timoshenko beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation. The SWCNTs are assumed to be aligned and straight with a uniform layout. Four different carbon nanotubes (CNTs) distributions including uniform and three types of functionally graded distributions of CNTs through the thickness are considered. The rule of mixture is used to describe the effective material properties of the nanocomposite beams. The governing equations are derived through using Hamilton's principle and then solved by using the generalized differential quadrature method (GDQM). Natural frequencies and critical buckling load are obtained for nanocomposite beams with different boundary conditions. Effects of several parameters, such as nanotube volume fraction, foundation stiffness parameters, slenderness ratios, CNTs distribution and boundary conditions on both natural frequency and critical buckling load are investigated. The results indicate that the above-mentioned parameters play a very important role on the free vibrations and buckling characteristics of the beam. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Engineering, Multidisciplinary

Probabilistic finite element-based reliability of corroded pipelines with interacting corrosion cluster defects

Abraham Mensah, Srinivas Sriramula

Summary: This paper proposes a pathway for developing efficient performance functions to evaluate the probability of failure for interacting pipeline corrosion clustering defects using a probabilistic finite element-based reliability method. The framework reduces computational cost and offers informed decision-making on risk and maintenance management.

INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING (2024)

Article Engineering, Multidisciplinary

A semi-analytical model to predict residual stress distribution in thick wall girth weld with narrow gap welding

Baozhu Zhang, Wenchun Jiang, Yun Luo, Wei Peng, Yingjie Qiao

Summary: This paper studies the distribution of residual stress in thick wall girth welds using narrow-gap welding. The study finds that the heat input, wall thickness, radius thickness ratio, and number of welding passes have an effect on residual stress. A model for the distribution of welding residual stress through the wall thickness is proposed, and its results are in good agreement with finite element calculation results.

INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING (2024)

Article Engineering, Multidisciplinary

Experimental research of stress state and residual stresses of the hydropower pipeline branch model

Stefan Culafic, Darko Bajic, Tasko Maneski

Summary: This paper presents experimental research on a branch model conducted in laboratory conditions. The study verifies the linear relationship between stress and internal pressure in the field of elasticity and reveals the occurrences when stresses exceed the yield strength of the branch material, such as plastic deformations of the branch model. The research also defines the dependence of stress on internal pressure in both the field of elasticity and the zone of residual stresses.

INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING (2024)

Article Engineering, Multidisciplinary

Residual stress and microstructure control in welding of SA508 low alloy steel

Wenchun Jiang, Wenlu Xie, Xinyue Qi, Yangguang Deng, Yu Wan, Xuefang Xie

Summary: Various types of solid-state phase transformations (SSPT) occur during the SA508 steel welding process, leading to complex microstructure distribution and significant influence on residual stress distribution. To better control microstructure and residual stress, optimization of process parameters related to welding thermal cycles is necessary.

INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING (2024)