4.7 Article

Assembled modules technology for site-specific prolonged delivery of norfloxacin

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 405, Issue 1-2, Pages 90-96

Publisher

ELSEVIER
DOI: 10.1016/j.ijpharm.2010.11.050

Keywords

Norfloxacin; Dome Matrix (R); Release modules; Floating dosage form

Funding

  1. CNPq (National Counsel of Technological and Scientific Development)

Ask authors/readers for more resources

The aim of this research was to design and study norfloxacin (NFX) release in floating conditions from compressed hydrophilic matrices of hydroxypropylmethylcellulose (HPMC) or poly(ethylene oxide) (PEO). Module assembling technology for drug delivery system manufacturing was used. Two differently cylindrical base curved matrix/modules, identified as female and male, were assembled in void configuration by friction interlocking their concave bases obtaining a floating release system. Drug release and floatation behavior of this assembly was investigated. Due to the higher surface area exposed to the release medium, faster release was observed for individual modules compared to their assembled configuration, independently on the polymer used and concentration. The release curves analyzed using the Korsmeyer exponential equation and Peppas & Sahlin binomial equation showed that the drug release was controlled both by drug diffusion and polymer relaxation or erosion mechanisms. However, convective transport was predominant with PEO and at low content of polymers. NFX release from PEO polymeric matrix was more erosion dependent than HPMC. The assembled systems were able to float in vitro for up to 240 min, indicating that this drug delivery system of norfloxacin could provide gastro-retentive site-specific release for increasing norfloxacin bioavailability. (C) 2010 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available