4.6 Article

Vaccination with embryonic stem cells generates effective antitumor immunity against ovarian cancer

Journal

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE
Volume 31, Issue 1, Pages 147-153

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ijmm.2012.1195

Keywords

ovarian cancer; embryonic stem cell; antitumor immunity; immunotherapy; cancer vaccine

Funding

  1. National Natural Science Foundation of China [81072141]
  2. Research and Development foundation in Peking University People's Hospital [RDB2010-09]

Ask authors/readers for more resources

To date, only a few studies have suggested that human embryonic stem cells (hESCs) might effectively immunize against colon and lung cancer. The purpose of this study was to investigate the therapeutic potential of hESCs as a vaccine to induce widespread antitumor effects in different animal models and various types of cancer. C57BL/6 mice with 1138 ovarian cancer cell and Fischer 344 rats with NuTu-19 ovarian cancer cell models were used. Fifty-four mice were divided into six groups with nine mice in each group. Each mouse was immunized with pre-inactivated hESCs (H9) or mouse embryonic stem cells (mESCs; IVP-ESI) or ID8 or phosphate-buffered saline (PBS). Twenty-four rats were divided into four groups with six rats in each group, each rat immunized with pre-inactivated hESCs (H9) or NuTu-19 or PBS. After the vaccination, each mouse was challenged with live ID8 cells subcutaneously, and each rat was challenged with live NuTu-19 cells intraperitoneally. We discovered that vaccination of mice with the hESC line H9 and the m ESC line IVP-ESI generated consistent cellular and humoral immune responses against 1138 ovarian cancer. H9 and IVP-ESI vaccinated mice obtained antitumor immune protection, and H9 vaccinated rats had the longest survival time and least distant metastases. No evidence of side-effects was observed. We also compared the immunogenicity against ovarian cancer between the hESC line, H9, and the mESC line, IVP-ESI, that derived from the inner cell mass in different species. We found that there were no significant differences between them. Furthermore, immunohistochemical staining revealed that several oncogenes and tumor suppressor genes, such as HER-2, C-myc, p53, and nm23, were expressed in H9, many of which were also shared by ovarian cancer. hESC vaccines can induce antitumor effects in two animal models and in ovarian cancer, indicating that the activity of the vaccine is universal, and, more importantly, it is safe.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available