4.7 Article

Fatigue crack growth simulations of 3-D problems using XFEM

Journal

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
Volume 76, Issue -, Pages 112-131

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2013.09.001

Keywords

3-D cracks; Fatigue crack growth; SIFs; Level sets; Enrichment; XFEM

Ask authors/readers for more resources

In this work, a simple and efficient approach based on extended finite element method (XFEM) has been presented to simulate three-dimensional fatigue crack growth simulations. In XFEM, standard displacement based approximation is enriched by additional functions using partition of unity concept. These enrichment functions are derived from the theoretical background of the problem under consideration. In the proposed approach, a crack front has been divided into many piecewise curve crack segments to avoid an iterative solution. Three-dimensional triangulation scheme is adopted for the calculation of level set functions on the crack surface. At the crack front, the level set functions are approximated using the concept of hanging nodes using quadratic finite element shape functions. These level sets are used to accurately define the crack geometry. The fatigue crack growth simulations have been performed using Paris law of fatigue crack growth. Various 3-D planar, non-planar and arbitrary shape crack growth problems are solved to reveal the sturdiness and versatility of the proposed XFEM approach. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available