4.7 Article

Mitigation of ice crystallization fouling in stationary and circulating liquid-solid fluidized bed heat exchangers

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 53, Issue 1-3, Pages 403-411

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2009.09.016

Keywords

Crystallization; Ice; Fouling; Slurries; Liquid-solid fluidization

Ask authors/readers for more resources

Liquid-solid fluidized bed heat exchangers are attractive ice crystallizers since they are able to mitigate ice crystallization fouling and exhibit high heat transfer coefficients. Experiments show that the fouling removal ability of stationary fluidized beds increases with decreasing bed voidage (95-80%) and increasing particle size (2-4 mm). The removal of ice crystallization fouling appears to be more effective in circulating fluidized beds, especially at high circulation rates. Fouling removal is realized by both particle-wall collisions and pressure fronts induced by particle-particle collisions. A comparison between ice crystallization experiments and impact characteristics shows that the removal rate is proportional to the impulse exerted on the wall. A model based on these phenomena is discussed and predicts the transition temperature difference for ice crystallization fouling in both stationary and circulating fluidized beds with an average absolute error of 9.2%. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Energy & Fuels

Modelling and experimental validation of a fluidized bed based CO2 hydrate cold storage system

H. Zhou, I. E. E. de Sera, C. A. Infante Ferreira

APPLIED ENERGY (2015)

Article Thermodynamics

Low grade waste heat recovery using heat pumps and power cycles

D. M. van de Bor, C. A. Infante Ferreira, Anton A. Kiss

ENERGY (2015)

Article Thermodynamics

Experimental investigation of heat transfer and pressure drop characteristics of ammonia-water in a mini-channel annulus

Dennis M. van de Bor, Catalina Vasilescu, Carlos Infante Ferreira

EXPERIMENTAL THERMAL AND FLUID SCIENCE (2015)

Article Thermodynamics

Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers

A. H. Mosaffa, L. Garousi Farshi, C. A. Infante Ferreira, M. A. Rosen

ENERGY CONVERSION AND MANAGEMENT (2016)

Article Thermodynamics

Heat transfer and flow characteristics during the formation of TBAB hydrate slurry in a coil heat exchanger

Hongxia Zhou, Catalina Vasilescu, Carlos Infante Ferreira

INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID (2016)

Article Thermodynamics

Enhanced performance of wet compression-resorption heat pumps by using NH3-CO2-H2O as working fluid

V. Gudjonsdottir, C. A. Infante Ferreira, Glenn Rexwinkel, Anton A. Kiss

ENERGY (2017)

Review Thermodynamics

Techno-economic review of solar cooling technologies based on location-specific data

Carlos Infante Ferreira, Dong-Seon Kim

INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID (2014)

Review Thermodynamics

Solar driven double-effect absorption cycles for sub-zero temperatures

Catalina Vasilescu, Carlos Infante Ferreira

INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID (2014)

Article Thermodynamics

First and second law analysis of ammonia/salt absorption refrigeration systems

L. Garousi Farshi, C. A. Infante Ferreira, S. M. S. Mahmoudi, M. A. Rosen

INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID (2014)

Article Green & Sustainable Science & Technology

Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications

A. H. Mosaffa, L. Garousi Farshi, C. A. Infante Ferreira, M. A. Rosen

RENEWABLE ENERGY (2014)

Article Energy & Fuels

Absorption heat pump cycles with NH3 - ionic liquid working pairs

Meng Wang, Carlos A. Infante Ferreira

APPLIED ENERGY (2017)

Article Engineering, Chemical

Effect of type-III Anti-Freeze Proteins (AFPs) on CO2 hydrate formation rate

Hongxia Zhou, Carlos Infante Ferreira

CHEMICAL ENGINEERING SCIENCE (2017)

Proceedings Paper Engineering, Mechanical

PERFORMANCE PREDICTION OF SINGLE-EFFECT ABSORPTION HEAT PUMP CYCLES USING IONIC LIQUIDS

Meng Wang, Carlos A. Infante Ferreira

12TH IIR GUSTAV LORENTZEN NATURAL WORKING FLUIDS CONFERENCE (2016)

Proceedings Paper Thermodynamics

HEAT TRANSFER AND FLOW CHARACTERISTICS DURING THE FORMATION OF TBAB HYDRATE SLURRY

Hongxia Zhou, Carlos Infante Ferreira

11TH IIR GUSTAV LORENTZEN CONFERENCE ON NATURAL REFRIGERANTS (2014): NATURAL REFRIGERANTS AND ENVIRONMENTAL PROTECTION (2014)

Proceedings Paper Thermodynamics

EXPERIMENTAL VALIDATION OF A MINI-CHANNEL MULTI-TUBE AMMONIA/WATER ABSORPTION/DESORPTION MODEL

C. W. M. Nefs, D. M. Van de Bor, C. A. Infante Ferreira

11TH IIR GUSTAV LORENTZEN CONFERENCE ON NATURAL REFRIGERANTS (2014): NATURAL REFRIGERANTS AND ENVIRONMENTAL PROTECTION (2014)

Article Thermodynamics

Natural convection effects in insulation layers of spherical cryogenic storage tanks

Mahsa Taghavi, Swapnil Sharma, Vemuri Balakotaiah

Summary: This study investigates the natural convection effects in the insulation layers of spherical storage tanks and their impact on the tanks' performance. The permeability and Rayleigh number of the insulation material are considered as key factors. The results show that as the Rayleigh number increases, new convective cells emerge and cause the cold boundary to approach the external hot boundary. In the case of large temperature differences, multiple solutions may coexist.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental investigation on self-induced jet impingement boiling using R1336mzz(Z)

Jinyang Xu, Fangjun Hong, Chaoyang Zhang

Summary: This study introduces a self-induced jet impingement device for enhancing pool boiling performance in high power electronic cooling. Through visualization and parametric investigations, the effects of this device on pool boiling performance are studied, revealing the promotion of additional liquid supply and vapor exhausting. The flow rate of the liquid jet is found to positively impact boiling performance.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Numerical study on multiphase evolution and molten pool dynamics of underwater wet laser welding in shallow water environment

Wenchao Ke, Yuan Liu, Fissha Biruke Teshome, Zhi Zeng

Summary: Underwater wet laser welding (UWLW) is a promising and labor-saving repair technique. A thermal multi-phase flow model was developed to study the heat transfer, fluid dynamics, and phase transitions during UWLW. The results show that UWLW creates a water keyhole, making the welding environment similar to in air laser welding.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Thermal conductivity analysis of natural fiber-derived porous thermal insulation materials

Xingrong Lian, Lin Tian, Zengyao Li, Xinpeng Zhao

Summary: This study investigates the heat transfer mechanisms in natural fiber-derived porous structures and finds that thermal radiation has a significant impact on the thermal conductivity in low-density regions, while natural convection rarely occurs. Insulation materials derived from micron-sized natural fibers can achieve minimum thermal conductivity at specific densities. Strategies to lower the thermal conductivity include increasing porosity and incorporating nanoscale pores using nanosize fibers.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Ice accretion compositions in ice crystal icing

Yasir A. Malik, Kilian Koebschall, Stephan Bansmer, Cameron Tropea, Jeanette Hussong, Philippe Villedieu

Summary: Ice crystal icing is a significant hazard in aviation, and accurate modeling of sticking efficiency is essential. In this study, icing wind tunnel experiments were conducted to quantify the volumetric liquid water fraction, sticking efficiency, and maximum thickness of ice layers. Two measurement techniques, calorimetry and capacitive measurements, were used to measure the liquid water content and distribution in the ice layers. The experiments showed that increasing wet bulb temperatures and substrate heat flux significantly increased sticking efficiency and maximum ice layer thickness.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Mechanisms for improving fin heat dissipation through the oscillatory airflow induced by vibrating blades

Jinqi Hu, Tongtong Geng, Kun Wang, Yuanhong Fan, Chunhua Min, Hsien Chin Su

Summary: This study experimentally examined the heat dissipation of vibrating fans and demonstrated its inherent mechanism through numerical simulation. The results showed that the flow fields induced by the vibrating blades exhibited pulsating features and formed large-scale and small-scale vortical structures, significantly improving heat dissipation. The study also identified the impacts of different blade structures and developed a trapezoidal-folding blade, which effectively reduced the maximum temperature of the heat source and alleviated high-temperature failure crisis.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Molecular dynamics simulation of interfacial heat transfer behavior during the boiling of low-boiling-point organic fluid

Dan-Dan Su, Xiao-Bin Li, Hong-Na Zhang, Feng-Chen Li

Summary: The boiling heat transfer of low-boiling-point working fluid is a common heat dissipation technology in electronic equipment cooling. This study analyzed the interfacial boiling behavior of R134a under different conditions and found that factors such as the initial thickness of the liquid film, solid-liquid interaction force, and initial temperature significantly affect the boiling mode and thermal resistance.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

A unified lattice Boltzmann- phase field scheme for simulations of solutal dendrite growth in the presence of melt convection

Jinyi Wu, Dongke Sun, Wei Chen, Zhenhua Chai

Summary: A unified lattice Boltzmann-phase field scheme is proposed to simulate dendrite growth of binary alloys in the presence of melt convection. The effects of various factors on the growth are investigated numerically, and the model is validated through comparisons and examinations.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental study of the temperature characteristics of the main cables and slings in suspension bridge fires

Shaokun Ge, Ya Ni, Fubao Zhou, Wangzhaonan Shen, Jia Li, Fengqi Guo, Bobo Shi

Summary: This study investigated the temperature distribution of main cables in a suspension bridge during fire scenarios and proposed a prediction model for the maximum temperature of cables in different lane fires. The results showed that vehicle fires in the emergency lane posed a greater thermal threat to the cables.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Two-phase flow and heat transfer on a cylinder via low-velocity jet impact

Shuang-Ying Wu, Shi-Yao Zhou, Lan Xiao, Jia Luo

Summary: This paper investigates the two-phase flow and heat transfer characteristics of low-velocity jet impacting on a cylindrical surface. The study reveals that the heat transfer regimes are non-phase transition and nucleate boiling with the increase of heat transfer rate. The effects of jet impact height and outlet velocity on local surface temperatures are pronounced at the non-phase transition stage. The growth rates of heat transfer rate and liquid loss rate increase significantly from the non-phase transition to nucleate boiling stage.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Investigation on natural to ventilated cavitation considering the air-vapor interactions by Merging theory with insight on air jet location/rate effect

Emad Hasani Malekshah, Wlodzimierz Wlodzimierz, Miros law Majkut

Summary: Cavitation has significant practical importance and can be controlled by air injection. This study investigates the natural to ventilated cavitation process around a hydrofoil through numerical and experimental methods. The results show that the location and rate of air injection have a meaningful impact on the characteristics of cavitation.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental and numerical investigation on the influence of wall deformations on mixing quality of a Multifunctional Heat Exchanger/Reactor (MHER)

Feriel Yahiat, Pascale Bouvier, Antoine Beauvillier, Serge Russeil, Christophe Andre, Daniel Bougeard

Summary: This study explores the enhancement of mixing performance in laminar flow equipment by investigating the generation of chaotic advection using wall deformations in annular geometries. The findings demonstrate that the combined geometry can achieve perfect mixing at various Reynolds numbers.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental study on anti-frost property and edge effect of superhydrophobic surface with millimeter-scale geometries

Hui He, Ning Lyu, Caihua Liang, Feng Wang, Xiaosong Zhang

Summary: This study investigates the condensation, frosting, and defrosting processes on superhydrophobic surfaces with millimeter-scale structures. The results reveal that the structures can influence the growth and removal of frost crystals, with the bottom grooves creating a frost-free zone and conical edges promoting higher frost crystal heights. Two effective methods for defrosting are observed: hand-lifting the groove and airfoil retraction contraction on protruding structures. This research provides valuable insights into frost formation and defrosting on millimeter-structured superhydrophobic surfaces, with potential applications in anti-frost engineering.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Controlling heat capacity in a thermal concentrator using metamaterials: Numerical and experimental studies

Thiwanka Arepolage, Christophe Verdy, Thibaut Sylvestre, Aymeric Leray, Sebastien Euphrasie

Summary: This study developed two thermal concentrators, one with a 2D design of uniform thickness and another with a 3D design, using the coordinate transformation technique and metamaterials. By structuring the thermal conductor, the desired local density-heat capacity product and anisotropic thermal conductivities were achieved. The homogenized thermal conductivities were obtained from finite element simulations and cylindrical symmetry consideration. A 3D concentrator was fabricated using 3D metal printing and characterized using a thermal camera. Compared to devices that solely consider anisotropic conductivities, the time evolution characteristics of the metadevice designed with coordinate transformation were closer to those of an ideal concentrator.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Supercritical heat transfer of CO2 in horizontal tube emphasizing pseudo-boiling and stratification effects

Liangyuan Cheng, Qingyang Wang, Jinliang Xu

Summary: In this study, we investigated the supercritical heat transfer of CO2 in a horizontal tube with a diameter of 10.0 mm, covering a wide range of pressures, mass fluxes, and heat fluxes. The study revealed a non-monotonic increase in wall temperatures along the flow direction and observed both positive and negative wall temperature differences between the bottom and top tube. The findings were explained by the thermal conduction in the solid wall interacting with the stratified-wavy flow in the tube.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)