4.5 Article

Effect of non-singular stress on the brittle fracture of V-notched structure

Journal

INTERNATIONAL JOURNAL OF FRACTURE
Volume 174, Issue 2, Pages 127-138

Publisher

SPRINGER
DOI: 10.1007/s10704-012-9680-8

Keywords

Brittle fracture; Non-singular stress; V-notch; Boundary element method

Funding

  1. National Natural Science Foundation of China [11102056]
  2. Natural Science Foundation of Anhui Province of China [11040606Q38]

Ask authors/readers for more resources

The traditional brittle fracture criteria for V-notched structures are established on the base of the singular stress field at a V-notch tip where only two singular stress terms are adopted. The non-singular stress terms also play a significant role in determining the stress and strain fields around a V-notch tip, which in turn could affect the fracture character of V-notched structures predicted by the fracture mechanics criteria. In this paper, the effect of the non-singular stress on the brittle fracture properties for the V-notch problem is discussed. Firstly, the stress field around a V-notch tip is described by the Williams asymptotic expansions. At the same time, the stress field far from the V-notch tip is modeled by the conventional boundary element method since there is no stress singularity. By the combination of the Williams asymptotic expansions and the boundary integral equations, the complete stress field at a V-notch tip including several non-singular stress terms can be obtained. Then, three different brittle fracture criteria are introduced to predict the critical loading and initial crack propagation direction of V-notched structures under mixed-mode loading. Comparing with the existed experimental results, it can be found that the degree of accuracy of the predicted results when taking into account the non-singular stress terms is much higher than the predicted ones neglecting the non-singular stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available