4.5 Article Proceedings Paper

On the dynamics of necking and fragmentation-II. Effect of material properties, geometrical constraints and absolute size

Journal

INTERNATIONAL JOURNAL OF FRACTURE
Volume 150, Issue 1-2, Pages 3-36

Publisher

SPRINGER
DOI: 10.1007/s10704-008-9233-3

Keywords

expanding ring experiment; shear band propagation; release waves

Ask authors/readers for more resources

In this series of papers, we investigate the mechanics of deformation localization and fragmentation in ductile materials. The behavior of ductile metals at strain rates between 4000 and 15,000 s(-1) is considered. The expanding ring experiment is used as the primary tool for examining the material behavior in this range of strain rates. In Part I, the details of the experiment and the experimental observations on Al 6061-O were reported. Statistics of necking and fragmentation were evaluated and the process was modeled through the idea of the Mott release waves both from necking and fragmentation. Finally, it was shown that the strain in the ring in regions that strained uniformly never exceeded the necking strain. In the present paper, Part II, we address the issue of strain hardening and strain-rate sensitivity. Specifically, we examine different materials-Al 1100-H14, and Cu 101-in order to determine the role of material constitutive property on the dynamics of necking. These experiments reinforce the conclusion presented in Part I that the onset of necking essentially terminates the possibility of further straining in other parts of the ring and even more importantly that there is no influence of material inertia on the strain at the onset of necking in this wide range of materials. Furthermore, the effect of aspect ratio of the specimen is evaluated; this reveals that as the aspect ratio increases beyond about five, in addition to or instead of diffuse necking, localization into the sheet necking mode is observed; in this mode, the effect of ring expansion speeds is demonstrated to result in an increase of the strain at the onset of localization. In addition, an absolute size effect is observed: larger specimens exhibit localization at larger strain levels. These observations are explained in terms of plastic wave propagation and reproduced with finite element simulations. In future contributions as part of this sequel, we will explore the effect of other geometrical constraints and the effect of a compliant cladding or coating on the development of necking and fragmentation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available