4.4 Article

Topography of the Variscan orogen in Europe: failed-not collapsed

Journal

INTERNATIONAL JOURNAL OF EARTH SCIENCES
Volume 103, Issue 5, Pages 1471-1499

Publisher

SPRINGER
DOI: 10.1007/s00531-014-1014-9

Keywords

Variscides; Palaeogeography; Orogenic topography; HT processes; Lithospheric extension; Tethyan rift

Ask authors/readers for more resources

The Variscan orogenic collage consists of three subduction-collision systems (Rheno-Hercynian, Saxo-Thuringian and Massif Central-Moldanubian). Devonian to early Carboniferous marine strata are widespread not only in the individual foreland fold and thrust belts, but also in post-tectonic basins within these foreland belts and on the Cadomian crust of peri-Gondwanan microcontinental fragments, which represent the upper plates of the subduction/collision zones. These marine basins preclude high elevations in the respective areas and also in their neighbourhood. Widespread late Carboniferous intra-montane basins with their coal-bearing sequences are likewise incompatible with high and dry plateaus. While narrow belts with high elevations remain possible along active margins within the orogen, comparison of the Variscides with the Himalaya/Tibetan plateau is unfounded. Plausible reasons for the scarcity of high Variscan relief include subduction of oceanic and even continental crust, subduction erosion, orogen-parallel extension and-most important-lithospheric thinning accompanied by high heat flow and magmatism. In many areas, timing and areal array of magmatism and HT metamorphism are not compatible with a model of tectonic thickening and subsequent gravitational collapse. It is suggested, instead, that lithospheric thinning and heating are due to mantle activities caused by the Tethys rift. The lower and middle crust were thermally softened and rendered unfit for stacking and isostatic uplift: in terms of topography, the Variscides represent a failed orogen. The HT regime also explains the abundance of granitoids and HT/LP metamorphic rocks typical of the Variscides. Melting in the HT regime extracted mafic components from Variscan and Cadomian crust as well as from Cadomian metasomatized lithospheric mantle, thus mimicking subduction-related magmatism. The onset of the HT regime at c. 340 Ma may also have triggered the final ascent of HP/UHP felsic metamorphic rocks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available