4.3 Article

An Analysis of the Slow Compression Breakage of Coal Using Microfocus X-Ray Computed Tomography

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/19392699.2014.907283

Keywords

Micro-focus computed tomography; Compression breakage; Microstructure; Coal degradation

Funding

  1. Southern African Coal Processing Society (SACPS)
  2. DST-NRF

Ask authors/readers for more resources

The degradation of coal and the production of coal fines during handling and transport is a serious problem in processes that depend on closely sized large particles. To minimize the production of fines, a fundamental understanding of coal breakage is required, so, to clarify the complex nature of coal breakage, a series of experiments was conducted to determine the influence of the internal physical coal structures on compression breakage characteristics. The structures investigated are the cleat and layered structure of coal and the mineral inclusions. Samples of uniform size and shape were prepared from a large block of South African Waterberg coal. The samples were analyzed nondestructively using microfocus x-ray computed tomography then wrapped in cling film and mechanically compressed while the pressure applied was measured. The virtual three-dimensional volume tomograms of the initial sample and the progeny were compared and the changes qualitatively analyzed. Conclusions were drawn as to where the fatal cracks initialized and how the cracks propagated. Particle-size distributions were done to quantify the extent of breakage versus the breakage strength of the sample. It was found that, of all the internal structures, the inherent crack distribution has the biggest influence on breakage and breakage patterns of coal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available