4.7 Article

Identification of cadmium-binding proteins from rice (Oryza sativa L.)

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 119, Issue -, Pages 597-603

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2018.07.190

Keywords

Cadmium-binding proteins; Metallothionein; Rice; Bioremediation

Funding

  1. Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences [CAAS-XTCX2016018]
  2. National Natural Science Foundation of China (NSFC) [31770124]

Ask authors/readers for more resources

Metal-binding proteins play an important role in maintaining intracellular metal homeostasis and eliminating heavy metal toxification. Many metallothioneins (MTs) have been isolated from mammalian sources, which are a family of low molecular weight metal-binding proteins that are rich in cysteine. However, plants contain a different type of cadmium-binding protein that contain fewer cysteine residues. In this study, cadmium affinity chromatography coupled with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has been used to separate and identify cadmium-binding proteins from different parts (root, stem, leaf and grain) of rice (Oryza sativa L) cultivated under cadmium stress conditions. Seven cadmium-binding proteins with low isoelectric points containing relatively few cysteine residues were chosen for expression in Escherichia coli. The cadmium removal efficiency of protein A3AGZ4 (OsJ_10480) from Escherichia coli Delta zntA-BL21 was the highest (57.35%), which compares favorably with the cadmium removal efficiency of metallothionein MT (48.99%, rat from mouse,) and SMT (55.84%, smt from Sinopotamon honanense). In addition, for the strain A3AGZ4-Delta zntA-BL21, most of the bound cadmium was found to accumulate in the cytoplasm and not the cell wall. These results indicate that these plant proteins can bind cadmium to reduce heavy metal toxicity, thus contributing towards bioremediation of cadmium in the environment. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available