4.6 Article

Increased expression of prostaglandin reductase 1 in hepatocellular carcinomas from clinical cases and experimental tumors in rats

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biocel.2014.05.017

Keywords

Diethylnitrosamine; Alkenal/one oxidoreductase; Carcinogen detoxification enzymes; 4-Hidroxynonenal; Tumor marker

Funding

  1. CONACYT [421197]
  2. Fondo Sectorial de Investigacion en Salud y Seguridad Social [SSA/IMSS/ISSSTE-CONACYT SALUD-2009-01-115431]

Ask authors/readers for more resources

To identify novel tumor-associated proteins, we analyzed the protein expression patterns from experimental hepatocellular carcinoma (HCC) that were induced using hepatocarcinogenesis models in rats. Rats were subjected to two previously described protocols of hepatocarcinogenesis using diethylnitrosamine as a carcinogen: the alternative Solt-Farber (aS&F) protocol, which induces HCC within 9 months, and Schiffer's model, which induces cirrhosis and multifocal HCC within 18 weeks. The patterns of protein expression from tumors and normal liver tissue were examined by SDS-PAGE and the bands identified at 33-34 kDa were analyzed by mass spectrometry. The prostaglandin reductase 1 (PTGR1) showed the highest number of peptides, with a confidence of level >99%. The increased expression of PTGR1 in tumors was confirmed in these two models by Western blotting and by increase in alkenal/one oxidoreductase activity (25-fold higher than normal liver). In addition, the gene expression level of Ptgr1, as measured by gRT-PCR, was increased during cancer development in a time-dependent manner (200-fold higher than normal liver). Furthermore, PTGR1 was detected in the cytoplasm of neoplastic cells in rat tumors and in 12 human HCC cases by immunohistochemistry. These analyses were performed by comparing the expression of PTGR1 to that of two well-known markers of hepatocarcinoma, Glutathione S-transferase pi 1 (GSTP1) in rats and glypican-3 in humans. The increased expression and activity of PTGR1 in liver carcinogenesis encourage further research aimed at understanding the metabolic role of PTGR1 in HCC and its potential application for human cancer diagnosis and treatment. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available