4.2 Article

Electrospun bioresorbable heart valve scaffold for tissue engineering

Journal

INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS
Volume 31, Issue 1, Pages 68-75

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/039139880803100110

Keywords

electrospinning; bioresorbable polymeric scaffold; cardiovascular system

Ask authors/readers for more resources

Currently marketed mechanical or biological prosthetic heart valves are regarded as valid substitutes for native heart valves suffering from degenerative pathologies. These devices require strict follow-up due to dysfunctions or post-surgical complications. Potential drawbacks of these medical devices are calcification, tearing of the cusps, thromboembolism and hemolysis. In this context, a tissue engineering approach offers a promising alternative scenario. In this paper, a trileaflet poly(epsilon-caprolactone) (PCL) heart valve scaffold prototype has been manufactured by electrospinning technique using a custom-made rotating target. Process parameters were selected in order to achieve suitable microstructure and mechanical performance. The electrospun heart valve prototype was functionally characterized by means of a pulse duplicator in order to evaluate the mechanical/hydraulic response to the imposed testing conditions. Leaflets synchronously opened in the ejection phase and the proper apposition of the leaflets prevented high leakage volumes in the diastolic phase. This preliminary study suggests a successful perspective for the proposed approach in designing a novel tissue engineered bioresorbable heart valve.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available