4.6 Article

Three-dimensional finite element analysis of multi-stage hot forming of railway wheels

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-010-2810-4

Keywords

Multi-stage hot forging; Upsetting; Piercing; Finite element analysis

Ask authors/readers for more resources

Three-dimensional finite element analyses has been carried out using DEFORM 3D software on multi-stage hot forming of railway wheels involving the processes of upsetting, forging, and punching of wheels. Thermal analysis related to heating the blank in furnace and all intermediate heat transfer stages between deforming operations have been conducted. Rigid viscoplastic finite element method has been utilized for coupled thermo-mechanical analysis of the processes. Modeling of punching the wheel bore has been carried out using Cockcroft and Latham fracture criterion. Evolution of thermo-mechanical parameters at selected points within the workpiece has been studied in detail. The method of simulating the effects of various process parameters has been explained using relevant mathematical relations. This study shows that design, optimization, and analysis of process perturbations for multi-stage railway wheel manufacturing process can be done efficiently in three-dimensional finite element simulations instead of conventional time and cost intensive trials. It might be necessary to use the results of finite element analysis in shop-floor to enhance productivity and reduce wheel rejection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available