4.6 Article

Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge-swap operators

Journal

Publisher

WILEY-BLACKWELL
DOI: 10.1002/nme.2943

Keywords

PPR; potential-based model; topological data structure; 4k mesh; nodal perturbation; edge-swap; dynamic fracture; extrinsic cohesive zone model

Ask authors/readers for more resources

Dependence on mesh orientation impacts adversely the quality of computational solutions generated by cohesive zone models. For instance, when considering crack propagation along interfaces between finite elements of 4k structured meshes, both extension of crack length and crack angle are biased according to the mesh configuration. To address mesh orientation dependence in 4k structured meshes and to avoid undesirable crack patterns, we propose the use of nodal perturbation (NP) and edge-swap (ES) topological operation. To this effect, the topological data structure TopS (Int. J. Numer. Meth. Engng 2005; 64: 1529-1556), based on topological entities (node, element, vertex, edge and facet), is utilized so that it is possible to access adjacency information and to manage a consistent data structure in time proportional to the number of retrieved entities. In particular, the data structure allows the ES operation to be done in constant time. Three representative dynamic fracture examples using ES and NP operators are provided: crack propagation in the compact compression specimen, local branching instability, and fragmentation. These examples illustrate the features of the present computational framework in simulating a range of physical phenomena associated with cracking. Copyright (C) 2010 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available