4.6 Article

Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from Coptotermes formosanus and expressed in E. coli

Journal

INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY
Volume 39, Issue 8, Pages 516-522

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ibmb.2009.03.006

Keywords

Termite; Cellulase; Over-expression; Endoglucanase; Exoglucanase

Ask authors/readers for more resources

An endogenous cellulase gene (CfEG3a) of Coptotermes formosanus, an economically important pest termite, was cloned and overexpressed in both native form (nCfEG) and C-terminal His-tagged form (tCfEG) in Escherichia coli. Both forms of recombinant cellulases showed hydrolytic activity on cellulosic substrates. The nCfEG was more active and stable than tCfEG even though the latter could be purified to near homogeneity with a simple procedure. The differential activities of nCfEG and tCfEG were also evidenced by hydrolytic products they produced on different substrates. On CIVIC, both acted as an endoglucanase, randomly hydrolyzing internal beta-1,4-glycosidic bonds and resulting in a smear of polymers with different lengths, although cellobiose, cellotriose, and cellotetraose equivalents were noticeable. The hydrolytic products of tCfEG were one unit sugar less than those produced by nCfEG. Using filter paper as substrate, however, the major hydrolytic products of nCfEG were cellobiose, cellotriose and trace of glucose; those of tCfEG were cellobiose, cellotriose and trace of cellotetraose, indicating a property similar to that of cellobiohydrolase, an exoglucanase. The results presented in this report uncovered the biochemical properties of the recombinant cellulase derived from the intact gene of Formosan subterranean termites. The recombinant cellulase would be useful in designing cellulase-inhibiting termiticides and incorporating into a sugar-based biofuel production program. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available