4.7 Article

Crystal Structure and Magnetic Properties of Two New Antiferromagnetic Spin Dimer Compounds; FeTe3O7X (X = Cl, Br)

Journal

INORGANIC CHEMISTRY
Volume 50, Issue 24, Pages 12877-12885

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic202093s

Keywords

-

Funding

  1. European Science Foundation (ESF)
  2. EuroMagNET II under the EC [228043]
  3. Swiss NSF
  4. NCCR MaNEP
  5. Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy [DE-FG02-86ER45259]

Ask authors/readers for more resources

Two new isostructural layered oxohalides FeTe3O7X (X = Cl, Br) were synthesized by chemical vapor transport reactions, and their crystal structures and magnetic properties were characterized by single-crystal X-ray diffraction, Raman spectroscopy, magnetic susceptibility and magnetization measurements, and also by density functional theory (DFT) calculations of the electronic structure and the spin exchange parameters. FeTe3O7X crystallizes in the monoclinic space group P2(1)/c with the unit cell parameters a = 10.7938(5), b = 7.3586(4), c = 10.8714(6) angstrom, beta = 111.041(5)degrees, Z = 4 for FeTe3O7CI, and a = 11.0339(10), b = 7.3643(10), c = 10.8892(10) angstrom, beta = 109.598(10)degrees, Z = 4 for FeTe3O7Br. Each compound has one unique Fe3+ ion coordinating a distorted [FeO5] trigonal bipyramid. Two such groups share edges to form [Fe2O8] dimers that are isolated from each other by Te4+ ions. The high-temperature magnetic properties of the compounds as well as spectroscopic investigations are consistent with an isolated antiferromagnetic spin dimer model with almost similar spin gaps of similar to 35 K for X = Cl and Br, respectively. However, deviations at low temperatures in the magnetic susceptibility and the magnetization data indicate that the dimers couple via an interdimer coupling. This interpretation is also supported by DFT calculations which indicate an interdimer exchange which amounts to 25% and 10% of the intradimer exchange for X = Cl and Br, respectively. The magnetic properties support the counterion character and a weak integration of halide ions into the covalent network similar to that in many other oxohalides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available