4.7 Article

Dinitrogen Difluoride Chemistry. Improved Syntheses of cis- and trans-N2F2, Synthesis and Characterization of N2F+Sn2F9-, Ordered Crystal Structure of N2F+Sb2F11-, High-Level Electronic Structure Calculations of cis-N2F2, trans-N2F2, F2N=N, and N2F+, and Mechanism of the trans-cis Isomerization of N2F2

Journal

INORGANIC CHEMISTRY
Volume 49, Issue 15, Pages 6823-6833

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic100471s

Keywords

-

Funding

  1. Air Force Office of Scientific Research
  2. DARPA
  3. Office of Naval Research
  4. National Science Foundation
  5. Department of Energy
  6. Division Of Chemistry
  7. Direct For Mathematical & Physical Scien [0956635] Funding Source: National Science Foundation

Ask authors/readers for more resources

N2F+ salts are important precursors in the synthesis of N-5(+) compounds, and better methods are reported for their larger scale production. A new, marginally stable N2F+ salt, N2F+Sn2F9-, was prepared and characterized. An ordered crystal structure was obtained for N2F+Sb2F11-, resulting in the first observation of individual N N and N-F bond distances for N2F+ in the solid phase. The observed N N and N-F bond distances of 1.089(9) and 1.257(8) angstrom, respectively, are among the shortest experimentally observed N-N and N-F bonds. High-level electronic structure calculations at the CCSD(T) level with correlation-consistent basis sets extrapolated to the complete basis limit show that cis-N2F2 is more stable than trans-N2F2 by 1.4 kcal/mol at 298 K. The calculations also demonstrate that the lowest uncatalyzed pathway for the trans-cis isomerization of N2F2 has a barrier of 60 kcal/mol and involves rotation about the N = N double bond. This barrier is substantially higher than the energy required for the dissociation of N2F2 to N-2 and 2 F. Therefore, some of the N2F2 dissociates before undergoing an uncatalyzed isomerization, with some of the dissociation products probably catalyzing the isomerization. Furthermore, it is shown that the trans-cis isomerization of N2F2 is catalyzed by strong Lewis acids, involves a planar transition state of symmetry C-s, and yields a 9:1 equilibrium mixture of cis-N2F2 and trans-N2F2. Explanations are given for the increased reactivity of cis-N2F2 with Lewis acids and the exclusive formation of cis-N2F2 in the reaction of N2F+ with F. The geometry and vibrational frequencies of the F2N = N isomer have also been calculated and imply strong contributions from ionic N2F+ F- resonance structures, similar to those in F3NO and FNO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available