4.6 Article

A Novel Chemical Surface Modification for the Fabrication of PEBA/SiO2 Nanocomposite Membranes To Separate CO2 from Syngas and Natural Gas Streams

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 53, Issue 44, Pages 17476-17486

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie503216p

Keywords

-

Funding

  1. Iran Nanotechnology Initiative Council
  2. Petrochemical Research and Technology Co. of Iran [0870289106]

Ask authors/readers for more resources

In this work, a novel chemical modification is introduced to fabricate poly(ether-block-amide)/silica (PEBA/SiO2) nanocomposite membranes for the separation of CO2 from syngas and natural gas streams. cis-9-Octadecenoic acid (OA) was utilized for surface modification of the nanoparticles to restrict their agglomeration within the polymeric matrix. To our best knowledge, there is no evidence about the application of this modifier agent for the fabrication of nanocomposite membranes. The separation performance of fabricated membranes was investigated by pure and mixed gas permeation experiments. The incorporation of modified nanoparticles into the polymeric matrix improved the separation performance of the fabricated nanocomposite membranes. For instance, by increasing the loading content of the SiO2 nanoparticles from 0 wt % (the neat PEBA membrane) to 8 wt %, at 25 degrees C and 2 bar, the ideal selectivity values of CO2/H-2, CO2/CH4, and CO2/N-2 were improved from 9, 18, and 61 to 17, 45, and 137, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Engineering, Environmental

Electrospun nanofiber affinity membranes for water treatment applications: A review

Romina HMTShirazi, Toraj Mohammadi, Amir Atabak Asadi, Maryam Ahmadzadeh Tofighy

Summary: Protecting freshwater resources and preventing water contamination are critical worldwide issues. Recent studies have focused on the potential of electrospun nanofiber materials as membranes for water reclamation, which have shown promising results.

JOURNAL OF WATER PROCESS ENGINEERING (2022)

Article Engineering, Chemical

Hybrid nanofiltration thin film hollow fiber membranes with adsorptive supports containing bentonite and LDH nanoclays for boron removal

Sanaz Ghiasi, Toraj Mohammadi, Maryam Ahmadzadeh Tofighy

Summary: This study focused on the removal of boron from water using hybrid nanofiltration thin film composite hollow fiber membranes. The researchers fabricated nanocomposite PVC HF membranes containing bentonite and LDH nanoparticles as adsorbents, and found that LDH interacts better with PVC polymeric chains and results in more hydrophilic membranes with better performance. The fabricated membranes containing LDH also have lower MWCO and more uniform pore size distribution, making them better options as support for the TFC layer formation to fabricate NF TFC membranes. The NF TFC membranes containing LDH exhibited better performance in boron removal compared to those containing bentonite.

JOURNAL OF MEMBRANE SCIENCE (2022)

Article Chemistry, Multidisciplinary

Investigation of open hole area effects on the air dynamic pressure, Froude number, and hydraulics of distillation trays using CFD

Sepideh Roshdi, Norollah Kasiri, Javad Ivakpour, Seyed Hassan Hashemabadi

Summary: This study numerically investigates the effect of open hole area (OHA) on the performance of distillation trays. The results show that increasing OHA leads to an increase in froth density, clear liquid height, and wet pressure drop, while reducing froth height. The efficiency and entrainment values of different trays with varying OHAs are compared using Fr number and air dynamic pressure, and the tray with 14% OHA is found to have the lowest values. Pure hydrodynamic analysis can be used to qualitatively study the effects of geometric changes on entrainment and efficiency.

CHEMICAL PAPERS (2023)

Review Polymer Science

Effects of carbon nanotubes on structure, performance and properties of polymer nanocomposite membranes for water/wastewater treatment applications: a comprehensive review

Elham Valamohammadi, Fatemeh Behdarvand, Toraj Mohammadi, Maryam Ahmadzadeh Tofighy, Zohreh Moghiseh

Summary: Polymeric membranes used in wastewater treatment and desalination show decreased efficiency over time. Polymer nanocomposite membranes (PNMs) with carbon nanotubes (CNTs) can improve permeability and antifouling properties, while also enhancing other physicochemical characteristics.

POLYMER BULLETIN (2023)

Article Chemistry, Multidisciplinary

Using a Novel Pervaporative Sequential-Co-immobilized Two- Sectional Bioreactor with an Ultralow Fouling-Biofouling Superhydrophobic Silicallite-1/PDMS Membrane to Enhance Bioethanol Production

Fariba Sadat Kamelian, Fereshteh Naeimpoor, Toraj Mohammadi

Summary: This study investigates the efficient fermentation of high glucose and xylose levels via an innovative two-stage fermentation-pervaporation process. The use of immobilized Zymomonas mobilis and Pichia stipitis in a sequential-co-immobilized culture improves bioethanol productivity and reduces inhibitions. The study also fabricates a tubular superhydrophobic silicalite-1/PDMS pervaporative membrane to reduce inhibitions. The results show improved xylose conversion and ethanol productivity, making it a robust integrated process for second-generation bioethanol production.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Biochemistry & Molecular Biology

A bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly (vinyl alcohol) nanofibrous mat: Preparation, characterization, and controlled drug release

Soha Habibi, Toraj Mohammadi, Romina HMTShirazi, Fatemeh Atyabi, Melika Kiani, Amir Atabak Asadi

Summary: In this study, double-layer CS/PVA/mupirocin (CPM) + CS/PVA/bupivacaine (CPB) electrospun nanofiber mats were prepared and crosslinked to optimize their water-resistant and biodegradation properties. The mats exhibited defect-free and interconnected nanofibers, providing a moist environment for efficient wound breathing and repairing. The highly porous mat absorbed wound exudates and allowed air permeability, reducing the chance of bacterial infections.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (2023)

Article Chemistry, Multidisciplinary

Preparation of organic-filled compatible nanocomposite membranes for enhanced CO2 permselectivity

Zahra Rezaee, Toraj Mohammadi, Omid Bakhtiari

Summary: In this study, nanocomposite membranes with uniform dispersion of amorphous PANI nanofibers were prepared using different concentrations of Pebax 1657 and PANI. The membranes exhibited defect-free structures and lower crystallinities. As the nanofiber loading increased, the CO2 permeability and selectivity of the membranes increased, surpassing the Robeson upper bound limit and approaching the values in 2008. The CO2 permeability and ideal CO2/CH4 selectivity of the nanocomposite membrane loaded with 10 wt.% PANI nanofibers increased to 121.2 Barrer and 33, respectively, showing increments of 64% and 40%.

JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

High performance antibiofouling hollow fiber polyethersulfone nanocomposite membranes incorporated with novel surface-modified silver nanoparticles suitable for membrane bioreactor application

Ali Behboudi, Toraj Mohammadi, Mathias Ulbricht

Summary: Surface-modified silver nanoparticles with different functional groups were synthesized and used as functional fillers in nanocomposite membranes for membrane bioreactors (MBRs). The modifications successfully immobilized the nanoparticles inside the membrane, reducing silver release. The modified nanoparticles exhibited enhanced antimicrobial activity and improved the antifouling properties of the membranes. This led to significant improvements in MBR performance, with increased flux, COD removal, and flux recovery.

JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY (2023)

Article Polymer Science

Evaluation of antifouling/biofouling ability of a novel MIL101(Cr)/PES composite membrane for acetate wastewater treatment in MBR application

Negin Asadi Arbabi, Mahsa Ostadi, Fariba Sadat Kamelian, Toraj Mohammadi, Soheil Zarghami, Mona Dehghankar

Summary: Membrane bioreactors (MBRs) have gained attention in recent years as biotechnology-based wastewater treatment processes. However, the issue of membrane fouling/biofouling has limited their widespread use. A novel MIL-101(Cr) (MCPs)/polyethersulfone (PES) composite membrane was prepared using the phase inversion method. Adding 0.4 wt% MCPs significantly improved the hydrophilicity and pore characteristics of the membrane, resulting in reduced fouling/biofouling. The optimal composite membrane exhibited improved water flux, fouling resistance, and COD removal efficiency.

POLYMER BULLETIN (2023)

Article Engineering, Chemical

Incorporation of 3-dimensional lycopodium with hydrophobic nature and interconnected nano-channels into polyvinylidene fluoride membranes for desalination applications by vacuum membrane distillation

Saeed Seraj, Toraj Mohammadi, Maryam Ahmadzadeh Tofighy

Summary: For the first time, lycopodium was incorporated into a polyvinylidene fluoride matrix to fabricate a lycopodium/polyvinylidene fluoride membrane for desalination applications. The membrane showed superior performance in terms of flux, salt rejection, water contact angle, and hydrophobicity compared to the neat polyvinylidene fluoride membrane. The presence of lycopodium with its hydrophobic nature and interconnected nano-channels in the membrane structure contributed to the improved flux and salt rejection.

FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING (2023)

Article Engineering, Chemical

Fabrication of high-performance MeI and HPEI assembled PES/CPES hollow fiber nanofiltration membranes with high positive charges for efficient removal of salt/heavy metal ions

Romina HMTShirazi, Azarakhsh Heidari, Toraj Mohammadi

Summary: Efficient separation of salts and heavy metal ions from wastewater is crucial for environmental protection and resource recovery. A new hollow fiber nanofiltration membrane (HFNM) with a highly positive charge was developed using HPEI self-assembly and MeI quaternization. The membrane exhibited superb rejection rates of Zn2+ and Mg2+, high water flux, and long-term stability, making it an effective solution for water purification.

DESALINATION (2023)

Review Engineering, Chemical

An Overview of Practical Aspects of the Design and Application of Polymeric/Ceramic Supports in Supported Liquid Membranes for Gas Separation

Hamed Faramarzi, Mehran Arzani, Abdollah Khosravanian, Hamidreza Mahdavi, Omid Bakhtiari, Toraj Mohammadi

Summary: The idea of using liquid membranes (LMs) for faster and facilitated transport is theoretically fascinating and promising for various applications. Among the different forms of LMs, supported liquid membranes (SLMs) have shown great selectivity and potential. This review comprehensively analyzes the current state of the art in SLMs for gas separation and discusses the design and application considerations when choosing between polymeric or ceramic supports. The principles of LMs, including their chronology, transport mechanism, and advantages and disadvantages are thoroughly examined, along with the different configurations suggested and their transition from the laboratory to practical implementation.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2023)

Review Engineering, Environmental

Synthesis and modification methods of metal-organic frameworks and their application in modification of polymeric ultrafiltration membranes: A review

Mona Dehghankar, Romina HMTShirazi, Toraj Mohammadi, Maryam Ahmadzadeh Tofighy

Summary: Metal-organic frameworks (MOFs) with highly flexible structures and extraordinary surface area are considered as promising materials for separation processes. However, the challenge lies in improving MOFs' stability and recyclability in membranes and overcoming membrane fouling. This article presents an overview of current progress in the combination of MOFs with polymeric membranes to address these issues.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Engineering, Chemical

Synthesis and Characterization of PVA Mixed Matrix Membrane Containing NaP Zeolite/Charcoal-Based Graphene Oxide Nanohybrid for Dehydration of Isopropanol by Pervaporation

Mohammad Hosein Moghadasin, Toraj Mohammadi, Maryam Ahmadzadeh Tofighy

Summary: This study reports the successful synthesis and integration of a NaP/GO nanohybrid into a PVA matrix to fabricate mixed matrix membranes. The membranes containing 0.5 wt% NaP/GO exhibited superior separation performance at an elevated temperature, with impressive separation factor and permeate flux.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2023)

Article Engineering, Chemical

Polyacrylonitrile (PAN)/Freeze-dried Chitosan (FCS)-NaY zeolite triple layer nanostructure fibrous adsorptive membrane (PAN/FCS-NaY TNAM) for Cu(II) and Pb(II) ions removal from aqueous solutions

Setareh Karimzadeh, Romina Hmtshirazi, Toraj Mohammadi, Amir Atabak Asadi

Summary: In this study, an innovative nanofibrous membrane was fabricated using an electrospinning technique for the removal of Cu(II) and Pb(II) ions from contaminated water. The membrane exhibited high removal percentages, good modeling capability, high water flux, suitable reusability, and long-term stability, making it a potential filter for water treatment applications.

SEPARATION AND PURIFICATION TECHNOLOGY (2023)

No Data Available