4.6 Article

Kinetics of Water Vapor Adsorption on Single-Layer Molecular Sieve 3A: Experiments and Modeling

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 53, Issue 41, Pages 16015-16024

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie5024645

Keywords

-

Funding

  1. U.S. DOE Office of Nuclear Energy's Nuclear Energy University Programs [NFE-12-03822]

Ask authors/readers for more resources

The objective of the current work was to shorten the gap for fundamental adsorption kinetic data required for the development of advanced adsorption unit-operation models to be incorporated into an overall plant-level model for spent nuclear fuel reprocessing. The kinetics of water-vapor adsorption on molecular sieve 3A was investigated at 2580 degrees C and water dew points from -69 to 17 degrees C. Water uptake curves were fitted with three kinetic models including the linear-driving-force model, the shrinking-core model, and the Langmuir kinetic model. The results suggest that the water-vapor adsorption on molecular sieve 3A under the investigated experimental conditions was controlled by both external film resistance and internal macropore resistance. The contribution of the external film resistance varied from 25% to 50% of the total mass-transfer resistance depending on the adsorption temperature. It was also found that the Langmuir kinetic model fitted individual sets of kinetic data very well, but the Langmuir adsorption constant obtained from curve fitting decreased with increasing adsorption temperature and with increasing water vapor pressure. This result indicates a significant surface heterogeneity of molecular sieve 3A and also implicitly verifies that the Langmuir isotherm model is unable to represent isotherms of water adsorption on molecular sieve 3A.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available