4.6 Article

Photochemical Oxidation Removal of NO and SO2 from Simulated Flue Gas of Coal-Fired Power Plants by Wet Scrubbing Using UV/H2O2 Advanced Oxidation Process

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 50, Issue 7, Pages 3836-3841

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie1020377

Keywords

-

Funding

  1. National Natural Science Foundation of China [50721140649]
  2. Foundation of State Key Laboratory of Coal Combustion [FSKLCC1003]
  3. Foundation for Excellent Doctorial Dissertation of Southeast University

Ask authors/readers for more resources

Photochemical oxidation removal of NO and SO2 from simulated flue gas of coal-fired power plants by wet scrubbing using UV/H2O2 advanced oxidation process was studied in a semicontinuous and small-scale ultraviolet (UV)-bubble column reactor with different conditions, including UV, H2O2 concentration, solution initial pH value, solution temperature, and liquid layer height. The results show that under all conditions studied, the SO2 is removed completely. The UV has an obvious impact on NO removal efficiency. With the increase of H2O2 concentration or liquid layer height, the NO removal efficiency greatly increases at first, and then the growth rate of NO removal efficiency gradually become smaller. The NO removal process is enhanced by the solution initial pH value, but it is inhibited by the solution temperature. The gaseous and liquid reaction products are determined using ion chromatography and gas analyzer, respectively. The removal path of NO and SO2 are also preliminarily discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available