4.6 Article

Characterization and Identification of the most Refractory Nitrogen Compounds in Hydroprocessed Vacuum Gas Oil

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 49, Issue 7, Pages 3184-3193

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie901473x

Keywords

-

Ask authors/readers for more resources

There is currently a growing need to hydroprocess heavier and tougher crude oils with increased nitrogen content. Therefore, hydrodenitrogenation (HDN) has become a critical hydroprocessing reaction, making it essential to gain insight into which nitrogen-containing compounds are the most difficult to treat. In the present article, we describe the identification of nitrogen compounds in severely pretreated feed for hydrocracking (HC). The nitrogen compounds in the N-slip to the hydrocracker are isolated and concentrated on solid-phase extraction (SPE) columns and identified by gas chromatography mass spectrometry (GC-MS), gas chromatography with atomic emission detection (GC-AED), and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations support the structural identification and are further used to investigate the reactivity. We find that the most refractory organic nitrogen compounds in the N-slip belong to the family of 4,8,9,10-tetrahydrocyclohepta[def]carbazoles. These molecules are slightly more basic than other carbazoles and thus are likely to have an impact on the performance of the downstream catalysts; however, their very low reactivities make them extremely difficult to remove under normal hydrotreating conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available