4.3 Article

Osmotic stress induces terminal differentiation in cultured normal human epidermal keratinocytes

Journal

IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL
Volume 44, Issue 5-6, Pages 135-139

Publisher

SPRINGER
DOI: 10.1007/s11626-008-9087-z

Keywords

osmotic stress; keratinocytes; dehydration; differentiation

Ask authors/readers for more resources

The signals for epidermal differentiation and barrier formation are largely unknown. One possible signal is dehydration or osmotic stress. To test this hypothesis, we investigated the effects of osmotic stress on markers of differentiation of normal human keratinocytes in culture. Hyperosmotic stress treatment of normal human keratinocyte cultures by elevated sorbitol concentrations was observed to induce markers of terminal differentiation. Sorbitol was added to keratinocyte media at 50, 100, 200, and 300 mM final concentration. These concentrations of sorbitol induce a dehydration effect or osmotic stress on the keratinocytes. These sorbitol treatments increased the levels of messenger RNA for the differentiation markers involucrin, transglutaminase, and filaggrin as measured by reverse transcription-polymerase chain reaction. Keratin K1 and K10 and involucrin protein levels were also increased in normal human keratinocyte cultures exposed to increasing osmotic stress. These observations suggest that keratinocytes in the epidermis may use dehydration as a sign to trigger the differentiation of the skin barrier.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available