4.6 Article

Toll-like receptor-mediated eosinophil-basophil differentiation: autocrine signalling by granulocyte-macrophage colony-stimulating factor in cord blood haematopoietic progenitors

Journal

IMMUNOLOGY
Volume 139, Issue 2, Pages 256-264

Publisher

WILEY
DOI: 10.1111/imm.12078

Keywords

cord blood; eosinophilbasophil; granulocytemacrophage colony-stimulating factor; lipopolysaccharide; p38 mitogen-activated protein kinase

Categories

Funding

  1. Allergy, Genes, and Environment Network of Centres of Excellence (AllerGen NCE Inc)
  2. Canadian Institutes for Health Research (CIHR)
  3. Ontario Graduate Student scholarship award

Ask authors/readers for more resources

Eosinophils are multi-functional leucocytes that play a role in inflammatory processes including allergy and infection. Although bone marrow (BM) inflammatory cells are the main source of eosinophil-basophil (Eo/B) differentiation-inducing cytokines, a recent role has been demonstrated for cytokine induction through Toll-like receptor (TLR)-mediated signalling in BM progenitors. Having previously demonstrated that cord blood (CB) progenitors induce Eo/B colony-forming units (CFU) after lipopolysaccharide (LPS) stimulation, we sought to investigate the intracellular mechanisms by which LPS induces Eo/B differentiation. Freshly isolated CD34-enriched human CB cells were stimulated with LPS (and/or pharmacological inhibitors) and assessed for alterations in haematopoietic cytokine receptor expression and signalling pathways by flow cytometry, Eo/B CFU in methylcellulose cultures, and cytokine secretion using Luminex assays. The LPS stimulation resulted in a significant increase in granulocytemacrophage colony-stimulating factor (GM-CSF)-responsive, as opposed to interleukin-5-responsive, Eo/B CFU, which also correlated with significant increases in CD34+ cell GM-CSFR expression. Functionally, CB CD34+ cells secrete abundant amounts of GM-CSF following LPS stimulation, via a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism; this secretion was responsible for Eo/B CFU formation ex vivo, as shown by antibody blockade. We show for the first time that LPS stimulation of CB progenitor cells results in autocrine activation of p38 MAPK-dependent GM-CSF secretion facilitating Eo/B differentiation ex vivo. This work provides evidence that early life exposure to products of bacterial agents can modulate Eo/B differentiation, representing a novel mechanism by which progenitor cells can respond to microbial stimuli and so affect immune and inflammatory responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available