4.4 Article

Structural robustness of biochemical network models-with application to the oscillatory metabolism of activated neutrophils

Journal

IET SYSTEMS BIOLOGY
Volume 2, Issue 1, Pages 39-47

Publisher

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/iet-syb:20070008

Keywords

-

Ask authors/readers for more resources

Sensitivity of biochemical network models to uncertainties in the model structure, with a focus on autonomously oscillating systems, is addressed. Structural robustness, as defined here, concerns the sensitivity of the model predictions with respect to changes in the specific interactions between the network components and encompass, for instance, uncertain kinetic models, neglected intermediate reaction steps and unmodelled transport phenomena. Traditional parametric sensitivity analysis does not address such structural uncertainties and should therefore be combined with analysis of structural robustness. Here a method for quantifying the structural robustness of models for systems displaying sustained oscillations is proposed. The method adopts concepts from robust control theory and is based on adding dynamic perturbations to the network of interacting biochemical components. In addition to providing a measure of the overall robustness, the method is able to identify specific network fragilities. The importance of considering structural robustness is demonstrated through an analysis of a recently proposed model of the oscillatory metabolism in activated neutrophils. The model displays small parametric sensitivities, but is shown to be highly unrobust to small perturbations in some of the network interactions. Identification of specific fragilities reveals that adding a small delay or diffusion term in one of the involved reactions, likely to exist in vivo, completely removes all oscillatory behaviour in the model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available