4.1 Article

Design of energy-efficient and robust ternary circuits for nanotechnology

Journal

IET CIRCUITS DEVICES & SYSTEMS
Volume 5, Issue 4, Pages 285-296

Publisher

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/iet-cds.2010.0340

Keywords

-

Ask authors/readers for more resources

Novel high-performance ternary circuits for nanotechnology are presented here. Each of these carbon nanotube field-effect transistor (CNFET)-based circuits implements all the possible kinds of ternary logic, including negative, positive and standard ternary logics, in one structure. The proposed designs have good driving capability and large noise margins and are robust. These circuits are designed based on the unique properties of CNFETs, such as the capability of setting the desired threshold voltage by changing the diameters of the nanotubes. This property of CNFETs makes them very suitable for the multiple-V-t design method. The proposed circuits are simulated exhaustively, using Synopsys HSPICE with 32 nm-CNFET technology in various test situations and different supply voltages. Simulation results demonstrate great improvements in terms of speed, power consumption and insusceptibility to process variations with respect to other conventional and state-of-the-art 32 nm complementary metal-oxide semiconductor and CNFET-based ternary circuits. For instance at 0.9 V, the proposed ternary logic and arithmetic circuits consume on average 53 and 40% less energy, respectively, compared to the CNFET-based ternary logic and arithmetic circuits, recently proposed in the literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available