4.6 Article

Acoustic Precursor Wave Propagation in Viscoelastic Media

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TUFFC.2014.2934

Keywords

-

Funding

  1. Defence Research and Development Canada (DRDC)

Ask authors/readers for more resources

Precursor field theory has been developed to describe the dynamics of electromagnetic field evolution in causally attenuative and dispersive media. In Debye dielectrics, the so-called Brillouin precursor exhibits an algebraic attenuation rate that makes it an ideal pulse waveform for communication, sensing, and imaging applications. Inspired by these studies in the electromagnetic domain, the present paper explores the propagation of acoustic precursors in dispersive media, with emphasis on biological media. To this end, a recently proposed causal dispersive model is employed, based on its interpretation as the acoustic counterpart of the Cole-Cole model for dielectrics. The model stems from the fractional stress-strain relation, which is consistent with the empirically known frequency power-law attenuation in viscoelastic media. It is shown that viscoelastic media described by this model, including human blood, support the formation and propagation of Brillouin precursors. The amplitude of these precursors exhibits a sub-exponential attenuation rate as a function of distance, actually being proportional to z(-p), where z is the distance traveled within the medium and 0.5 < p < 1. The precursors identified in this work facilitate the design of optimal waveforms for propagation in complex media, creating new possibilities for acoustic-pulse-based communication and imaging systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available