4.6 Article

Airborne Ultrasonic Phased Arrays using Ferroelectrets: A New Fabrication Approach

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TUFFC.2009.1108

Keywords

-

Ask authors/readers for more resources

In this work, a novel procedure that considerably simplifies the fabrication process of ferroelectret-based multi-element array transducers is proposed and evaluated. Also, the potential of ferroelectrets being used as active material for air-coupled ultrasonic transducer design is demonstrated. The new construction method of multi-element transducers introduces 2 distinctive improvements. First, active ferroelectret material is not discretized into elements, and second, the need of structuring upper and/or lower electrodes in advance of the permanent polarization of the film is removed. The aperture discretization and the mechanical connection are achieved in one step using a through-thickness conductive tape. To validate the procedure, 2 linear array prototypes of 32 elements, with a pitch of 3.43 mm and a wide usable frequency range from 30 to 300 kHz, were built and evaluated using a commercial phased-array system. A low crosstalk among elements, below -30 dB, was measured by interferometry. Likewise, a homogeneous response of the array elements, with a maximum deviation of +/- 1.8 dB, was obtained. Acoustic beam steering measurements were accomplished at different deflection angles using a calibrated microphone. The ultrasonic beam parameters, namely, lateral resolution, side lobe level, grating lobes, and focus depth, were congruent with theory. Acoustic images of a single reflector were obtained using one of the array elements as the receiver. Resulting images are also in accordance with numerical simulation, demonstrating the feasibility of using these arrays in pulse-echo mode. The proposed procedure simplifies the manufacturing of multidimensional arrays with arbitrary shape elements and not uniformly distributed. Furthermore, this concept can be extended to nonflat arrays as long as the transducer substrate conforms to a developable surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available