4.3 Article

SVMs Modeling for Highly Imbalanced Classification

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMCB.2008.2002909

Keywords

Computational intelligence; cost-sensitive learning; granular computing; highly imbalanced classification; oversampling; support vector machines (SVMs); undersampling

Ask authors/readers for more resources

Traditional classification algorithms can be limited in their performance on highly unbalanced data sets. A popular stream of work for countering the problem of class imbalance has been the application of a sundry of sampling strategies. In this correspondence, we focus on designing modifications to support vector machines (SVMs) to appropriately tackle the problem of class imbalance. We incorporate different rebalance heuristics in SVM modeling, including cost-sensitive learning, and over- and undersampling. These SVM-based strategies are compared with various state-of-the-art approaches on a variety of data sets by using various metrics, including G-mean, area under the receiver operating characteristic curve, F-measure, and area under the precision/recall curve. We show that we am able to surpass or match the previously known best algorithms on each data set. In particular, of the four SVM variations considered in this correspondence, the novel granular SVMs-repetitive undersampling algorithm (GSVM-RU) is the best in terms of both effectiveness and efficiency. GSVM-RU is effective, as it can minimize the negative effect of information loss while maximizing the positive effect of data cleaning in the undersampling process. GSVM-RU is efficient by extracting much less support vectors and, hence, greatly speeding up SVM prediction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available