4.1 Article

Tracking Vertex Flow and Model Adaptation for Three-Dimensional Spatiotemporal Face Analysis

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMCA.2010.2041659

Keywords

Face analysis; feature tracking; 3D models

Funding

  1. National Science Foundation [IIS-0541044, IIS-0414029]
  2. New York State Foundation for Science, Technology and Innovation
  3. Air Force Research Laboratory

Ask authors/readers for more resources

Research in the areas of 3-D face recognition and 3-D facial expression analysis has intensified in recent years. However, most research has been focused on 3-D static data analysis. In this paper, we investigate the facial analysis problem using dynamic 3-D face model sequences. One of the major obstacles for analyzing such data is the lack of correspondences of features due to the variable number of vertices across individual models or 3-D model sequences. In this paper, we present an effective approach for establishing vertex correspondences using a tracking-model-based approach for vertex registration, coarse-to-fine model adaptation, and vertex motion trajectory (called vertex flow) estimation. We propose to establish correspondences across frame models based on a 2-D intermediary, which is generated using conformal mapping and a generic model adaptation algorithm. Based on our newly created 3-D dynamic face database, we also propose to use a spatiotemporal hidden Markov model (ST-HMM) that incorporates 3-D surface feature characterization to learn the spatial and temporal information of faces. The advantage of using 3-D dynamic data for face recognition has been evaluated by comparing our approach to three conventional approaches: 2-D-video-based temporal HMM model, conventional 2-D-texture-based approach (e.g., Gabor-wavelet- based approach), and static 3-D-model-based approaches. To further evaluate the usefulness of vertex flow and the adapted model, we have also applied a spatial-temporal face model descriptor for facial expression classification based on dynamic 3-D model sequences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available