4.3 Article

Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2015.07.013

Keywords

Poly(D,L-lactide-co-glycolide); Bioactive glass; Composite; Freeze-drying; Bone; Tissue engineering

Funding

  1. Finnish Funding Agency for Technology and Innovation (TEKES) [3110/31/08]

Ask authors/readers for more resources

Bone tissue engineering requires highly porous three-dimensional (3D) scaffolds with preferable osteoconductive properties, controlled degradation, and good dimensional stability. In this study, highly porous 3D poly(D,L-lactide-co-glycolide) (PLGA) - bioactive glass (BG) composites (PLGA/BG) were manufactured by combining highly porous 3D fibrous BG mesh skeleton with porous PLGA in a freeze-drying process. The 3D structure of the scaffolds was investigated as well as in vitro hydrolytic degradation for 10 weeks. The effect of BG on the dimensional stability, scaffold composition, pore structure, and degradation behaviour of the scaffolds was evaluated. The composites showed superior pore structure as the BG fibres inhibited shrinkage of the scaffolds. The BG was also shown to buffer the acidic degradation products of PLGA. These results demonstrate the potential of these PLGA/BG composites for bone tissue engineering, but the ability of this kind of PLGA/BG composites to promote bone regeneration will be studied in forthcoming in vivo studies. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available