4.7 Article

3-D snake robot motion: Nonsmooth modeling, simulations, and experiments

Journal

IEEE TRANSACTIONS ON ROBOTICS
Volume 24, Issue 2, Pages 361-376

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2008.917003

Keywords

3-D snake robot; kinematics; nonsmooth dynamics; time-stepping method

Categories

Ask authors/readers for more resources

A nonsmooth (hybrid) 3-D mathematical model of a snake robot (without wheels) is developed and experimentally validated in this paper. The model is based on the framework of nonsmooth dynamics and convex analysis that allows us to easily and systematically incorporate unilateral contact forces (i.e., between the snake robot and the ground surface) and friction forces based on Coulomb's law of dry friction. Conventional numerical solvers cannot be employed directly due to set-valued force laws and possible instantaneous velocity changes. Therefore, we show how to implement the model for numerical treatment with a numerical integrator called the time-stepping method. This method helps to avoid explicit changes between equations during simulation even though the system is hybrid. Simulation results for the serpentine motion pattern lateral undulation and sidewinding are presented. In addition, experiments are performed with the snake robot Aiko for locomotion by lateral undulation and sidewinding, both with isotropic friction. For these cases, back-to-back comparisons between numerical results and experimental results are given.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available