4.7 Review

Review of Hybrid Prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an Application to Battery Life Prediction

Journal

IEEE TRANSACTIONS ON RELIABILITY
Volume 63, Issue 1, Pages 191-207

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TR.2014.2299152

Keywords

Condition monitoring; hybrid approach; predictive maintenance; prognostics; remaining useful life prediction

Ask authors/readers for more resources

Prognostics focuses on predicting the future performance of a system, specifically the time at which the system no long performs its desired functionality, its time to failure. As an important aspect of prognostics, remaining useful life (RUL) prediction estimates the remaining usable life of a system, which is essential for maintenance decision making and contingency mitigation. A significant amount of research has been reported in the literature to develop prognostics models that are able to predict a system's RUL. These models can be broadly categorized into experience-based models, date-driven models, and physics-based models. However, due to system complexity, data availability, and application constraints, there is no universally accepted bestmodel to estimate RUL. The review part of this paper specifically focused on the development of hybrid prognostics approaches, attempting to leverage the advantages of combining the prognostics models in the aforementioned different categories for RUL prediction. The hybrid approaches reported in the literature were systematically classified by the combination and interfaces of various types of prognostics models. In the case study part, a hybrid prognostics method was proposed and applied to a battery degradation case to show the potential benefit of the hybrid prognostics approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available