4.6 Article

One-step in situ synthesis of graphene-TiO2 nanorod hybrid composites with enhanced photocatalytic activity

Journal

MATERIALS RESEARCH BULLETIN
Volume 61, Issue -, Pages 280-286

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.materresbull.2014.10.040

Keywords

Composites; Nanostructures; Chemical synthesis; Catalytic properties

Funding

  1. Training Program for Young Teachers in Shanghai Colleges and Universities [ZZgcd14010]
  2. Municipal Undergraduate Innovative Training Project of Shanghai [cs1305007]
  3. Startup Foundation of Shanghai University of Engineering Science [2014-22]

Ask authors/readers for more resources

Chemically bonded graphene/TiO2 nanorod hybrid composites with superior dispersity were synthesized by a one-step in situ hydrothermal method using graphene oxide (GO) and TiO2 (P25) as the starting materials. The as-prepared samples were characterized by XRD, XPS, TEM, FE-SEM, EDX, Raman, N-2 adsorption, and UV-vis DRS techniques. Enhanced light absorption and a red shift of absorption edge were observed for the composites in the ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). Their effective photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light irradiation. An enhancement of photocatalytic performance was observed over graphene/TiO2 nanorod hybrid composite photocatalysts, as 3.7 times larger than that of pristine TiO2 nanorods. This work demonstrated that the synthesis of TiO2 nanorods and simultaneous conversion of GO to graphene without using reducing agents had shown to be a rapid, direct and clean approach to fabricate chemically bonded graphene/TiO2 nanorod hybrid composites with enhanced photocatalytic performance. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available