4.4 Article

Top-Down Fabrication of Gate-All-Around Vertically Stacked Silicon Nanowire FETs With Controllable Polarity

Journal

IEEE TRANSACTIONS ON NANOTECHNOLOGY
Volume 13, Issue 6, Pages 1029-1038

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNANO.2014.2363386

Keywords

Ambipolar transistor; Bosch process; double-gate; dual-gate; e-beam lithography; gate-all-around (GAA); polarity control; silicon nanowire (SiNW); top-down fabrication; XOR logic gate

Ask authors/readers for more resources

Asthe currentMOSFET scaling trend is facing strong limitations, technologies exploiting novel degrees of freedom at physical and architecture level are promising candidates to enable the continuation of Moore's predictions. In this paper, we report on the fabrication of novel ambipolar Silicon nanowire (SiNW) Schottky-barrier (SB) FET transistors featuring two independent gate-all-around electrodes and vertically stacked SiNW channels. A top-down approach was employed for the nanowire fabrication, using an e-beam lithography defined design pattern. In these transistors, one gate electrode enables the dynamic configuration of the device polarity (n- or p-type) by electrostatic doping of the channel in proximity of the source and drain SBs. The other gate electrode, acting on the center region of the channel switches ON or OFF the device. Measurement results on silicon show I-on/I-off > 10(6) and subthreshold slopes approaching the thermal limit, SS approximate to 64 mV/dec (70 mV/dec) for p(n)-type operation in the same physical device. Finally, we show that the XOR logic operation is embedded in the device characteristic, and we demonstrate for the first time a fully functional two-transistor XOR gate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available