4.7 Article

Three-Dimensional Blood Vessel Quantification via Centerline Deformation

Journal

IEEE TRANSACTIONS ON MEDICAL IMAGING
Volume 28, Issue 3, Pages 405-414

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2008.2004651

Keywords

Centerline deformation; complementary geodesic distance field; model-based quantification; region-based active tube model

Ask authors/readers for more resources

It is clinically important to quantify the geometric parameters of an abnormal vessel, as this information can aid radiologists in choosing appropriate treatments or apparatuses. Centerline and cross-sectional diameters are commonly used to characterize the morphology of vessel in various clinical applications. Due to the existence of stenosis or aneurysm, the associated vessel centerline is unable to truly portray the original, healthy vessel shape and may result in inaccurate quantitative measurement. To remedy such a problem, a novel method using an active tube model is proposed. In the method, a smoothened centerline is determined as the axis of a deformable tube model that is registered onto the vessel lumen. Three types of regions, normal, stenotic, and aneurysmal regions, are defined to classify the vessel segment under-analyzed by use of the algorithm of a cross-sectional-based distance field. The registration process used on the tube model is governed by different region-adaptive energy functionals associated with the classified vessel regions. The proposed algorithm is validated on the 3-D computer-generated phantoms and 3-D rotational digital subtraction angiography (DSA) datasets. Experimental results show that the deformed centerline provides better vessel quantification results compared with the original centerline. It is also shown that the registered model is useful for measuring the volume of aneurysmal regions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available