4.4 Article Proceedings Paper

All-Spin Logic Device With Inbuilt Nonreciprocity

Journal

IEEE TRANSACTIONS ON MAGNETICS
Volume 47, Issue 10, Pages 4026-4032

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMAG.2011.2159106

Keywords

All-spin logic; magnetization dynamics; ring oscillator; spin circuits; spin transfer torques; spin transport; spintronic logic devices; unidirectional network

Ask authors/readers for more resources

The need for low-power alternatives to digital electronic circuits has led to increasing interest in logic devices where information is stored in nanomagnets. This includes both nanomagnetic logic, where information is communicated through magnetic fields of nanomagnets, and all-spin logic (ASL), where information is communicated through spin currents. A key feature needed for logic implementation is nonreciprocity, whereby the output is switched according to the input but not the other way around, thus providing directed information transfer. The objective of this paper is to draw attention to possible ASL-based schemes that utilize the physics of spin-torque to build in nonreciprocity, as in transistors, that could allow logic implementation without the need for special clocking schemes. We use an experimentally benchmarked coupled spin-transport/magnetization-dynamics model to show that a suitably engineered single ASL unit indeed switches in a nonreciprocal manner. We then present heuristic arguments explaining the origin of this directed information transfer. Finally, we present simulations showing that individual ASL devices can be cascaded to construct a ring oscillator circuit, which provides a clear signature of inbuilt directionality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available