4.6 Article Proceedings Paper

A Permanent Magnet Assist, Segmented Rotor, Switched Reluctance Drive for Fault Tolerant Aerospace Applications

Journal

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS
Volume 55, Issue 1, Pages 298-305

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIA.2018.2864718

Keywords

Aerospace drives; fault tolerance; more electric aircraft; permanent magnet machines; rotating electrical machines; segmental rotor switched reluctance machine

Funding

  1. European Actuation 2015 collaborative research and development project

Ask authors/readers for more resources

This paper presents the design, analysis, prototype, and testing of a new fault tolerant electrical drive topology. The segmented rotor switched reluctance machine (S-SRM) has been modified to include permanent magnet assist by placing magnets in the stator slot opening. This introduces a magnetic bias which extends the magnetic operating region of the machine and results in greater torque when compared to the conventional fault tolerant segmental rotor switched reluctance machine. This new torque dense, fault tolerant topology was investigated using 2-D (two-dimensional) and 3-DFE methods and a prototype machine built, tested and verified against the simulations. Experimental testing was carried out with and without the magnets to assess the effect of the PM assist on torque performance. Static tests were carried out to obtain the torque-flux linkage-angle waveforms and then this information used to tune a bespoke drive and test the system under dynamic conditions. The superior fault tolerant performance of this PMA S-SRM topology is highlighted by measurements taken under phase open and short circuit fault conditions. The tests show that this fault-tolerant topology not only meets the mass requirements of the aerospace application, set originally by a PMSM, but also, with the magnets now placed on the stator the rotational induced EMFs and associated short circuit currents during a fault are drastically reduced. Hence the fault tolerance of this topology is an improvement on the PMSM topology, and it will be of benefit to fault critical systems such as aerospace drives and actuators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available