4.7 Article

High-Altitude Radar Measurements of Ice Thickness Over the Antarctic and Greenland Ice Sheets as a Part of Operation IceBridge

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2012.2203822

Keywords

High-altitude ice sheet measurements; ice surface clutter reduction; multichannel airborne radar

Funding

  1. National Aeronautics and Space Administration [NNX10AT68G]
  2. National Science Foundation [ANT-0424589]

Ask authors/readers for more resources

The National Aeronautics and Space Administration (NASA) initiated a program called Operation IceBridge for monitoring critical parts of Greenland and Antarctica with airborne LIDARs until ICESat-II is launched in 2016. We have been operating radar instrumentation on the NASA DC-8 and P-3 aircraft used for LIDAR measurements over Antarctica and Greenland, respectively. The radar package on both aircraft includes a radar depth sounder/imager operating at the center frequency of 195 MHz. During high-altitude missions flown to perform surface-elevation measurements, we also collected radar depth sounder data. We obtained good ice thickness information and mapped internal layers for both thicker and thinner ice. We successfully sounded 3.2-km-thick low-loss ice with a smooth surface and also sounded about 1-km or less thick shallow ice with a moderately rough surface. The successful sounding required processing of data with an algorithm to obtain 56-dB or lower range sidelobes and array processing with a minimum variance distortionless response algorithm to reduce cross-track surface clutter. In this paper, we provide a brief description of the radar system, discuss range-sidelobe reduction and array processing algorithms, and provide sample results to demonstrate the successful sounding of the ice bottom interface from high altitudes over the Antarctic and Greenland ice sheets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available