4.6 Article

PEM fuel cells modeling and analysis through current and voltage transient behaviors

Journal

IEEE TRANSACTIONS ON ENERGY CONVERSION
Volume 23, Issue 2, Pages 581-591

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEC.2007.914170

Keywords

capacitance; diffusion; double layer; overshoot/undershoot; polymer electrolyte membrane (PEM) fuel cells; transient voltage

Ask authors/readers for more resources

In the last 15 years, polymer electrolyte membrane (PEM) fuel cells have received much attention, mostly through experimental and empirical studies in scientific and industrial research. In most of the works, attention has been given to the steady state analysis of the PEM fuel cells. However, considerable efforts still need to be done to explain different transient behaviors of PEM fuel cells. This paper presents an analysis of the double layer charging effect and reactant diffusion through the cathode gas diffusion layer on voltage transients after sudden current variations. These transient phenomena have typical time durations of less than 5 s. The double layer charging dynamic explains the main voltage transient behaviors when the cathode inlet pressure is constant. In this case, a bicriteria optimization procedure is proposed for numerical characterization of the double-layer charging capacitance. When the air pressure is variable, a pseudo 2-D modeling of oxygen diffusion through the cathode gas diffusion layers, based on the Stephan - Maxwell multicomponent diffusion equations, is used to explain its contribution to the voltage transient overshoots/undershoots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available