4.2 Article

Multichannel Nonnegative Matrix Factorization in Convolutive Mixtures for Audio Source Separation

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASL.2009.2031510

Keywords

Expectation-maximization (EM) algorithm; multichannel audio; nonnegative matrix factorization (NMF); nonnegative tensor factorization (NTF); underdetermined convolutive blind source separation (BSS)

Funding

  1. French ANR

Ask authors/readers for more resources

We consider inference in a general data-driven object-based model of multichannel audio data, assumed generated as a possibly underdetermined convolutive mixture of source signals. We work in the short-time Fourier transform (STFT) domain, where convolution is routinely approximated as linear instantaneous mixing in each frequency band. Each source STFT is given a model inspired from nonnegative matrix factorization (NMF) with the Itakura-Saito divergence, which underlies a statistical model of superimposed Gaussian components. We address estimation of the mixing and source parameters using two methods. The first one consists of maximizing the exact joint likelihood of the multichannel data using an expectation-maximization (EM) algorithm. The second method consists of maximizing the sum of individual likelihoods of all channels using a multiplicative update algorithm inspired from NMF methodology. Our decomposition algorithms are applied to stereo audio source separation in various settings, covering blind and supervised separation, music and speech sources, synthetic instantaneous and convolutive mixtures, as well as professionally produced music recordings. Our EM method produces competitive results with respect to state-of-the-art as illustrated on two tasks from the international Signal Separation Evaluation Campaign (SiSEC 2008).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available