4.7 Article Proceedings Paper

The Integrated Surface Drought Index (ISDI) as an Indicator for Agricultural Drought Monitoring: Theory, Validation, and Application in Mid-Eastern China

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTARS.2013.2248077

Keywords

Data mining; drought; ISDI; remote sensing

Funding

  1. CRSRI Open Research Program [CKWV2012320/KY]
  2. National Natural Science Foundation of China [NSFC 41171403]
  3. Program for New Century Excellent Talents in University of Ministry of Education of China [NCET-08-0057]

Ask authors/readers for more resources

Based on the concept of the new drought index called Vegetation Drought Response Index (VegDRI) using data-mining technology, an Integrated Surface Drought Index (ISDI) was established in this study. ISDI improved the original model, adding remote sensed temperature information into the input factors. This index attempt to describe drought from a more comprehensive perspective, the integrated information including: traditional meteorological data, satellite-derived earth surface water and heat environments, vegetation conditions, and inherent properties of the earth's surface. The Cross-validation results indicated that ISDI construction models for three phases of growth season have very high regression accuracy. The practical application of ISDI in mid-eastern China during the reported dry year 2009 also demonstrated that it can provide accurate and detailed drought condition both at regional and local scale. This investigation showed that ISDI has good application potential for drought monitoring across China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Agronomy

Production and identification of xBrassicoraphanus distant hybrids between radish (Raphanus sativus L.) and kohlrabi (Brassica oleracea L. var. Caulorapa DC.)

Liang Zhang, Zhiyu Zhu, Fangfang Chen, Yueqing Zhu, Xiaocan Guo, Minjie Fu, Jiahong Chen, Jianguo Wu, Zhujun Zhu

Summary: In this study, distant hybridization between radish and kohlrabi was successfully achieved using tissue culture and chromosome doubling technology, resulting in the production of xBrassicoraphanus allotetraploids. The allotetraploid hybrids exhibited normal morphology and fertility, providing a basis for the production of new radish germplasm and serving as a bridge for gene transfer between Brassica and Raphanus vegetable species.

NEW ZEALAND JOURNAL OF CROP AND HORTICULTURAL SCIENCE (2023)

Article Plant Sciences

Synthesis of 19-hydroxyprogesterone and insights into the ring-opening mechanism of the 6,19-epoxy bridge

Yan Wang, Wei Dong, Qin Zhang, Zhen-Peng Li, Yue-Xing Wang, Xiu-Fen Li, Long-Jiang Huang

Summary: An efficient and scalable process for the synthesis of 19-hydroxyprogesterone was developed, achieving a total yield of 34.5%, which is significantly higher than the previously reported process (11.0% total yield). The plausible ring-opening mechanism of the 6,19-epoxy bridge in compound 7 was proposed, and the structures of intermediates were confirmed by LC-MS analysis.

JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH (2023)

Article Environmental Sciences

Adverse effects of triclosan on kidney in mice: Implication of lipid metabolism disorders

Wei Huang, Guodong Cao, Chengliang Deng, Yanyan Chen, Tao Wang, Da Chen, Zongwei Cai

Summary: This study investigated the effects of TCS exposure on kidney function in mice. The results showed that TCS caused renal injury, oxidative stress, inflammation, and fibrosis in a dose-dependent manner. Metabolite analysis revealed lipid accumulation and defective fatty acid metabolism in TCS-exposed mouse kidney, which may contribute to renal function impairment.

JOURNAL OF ENVIRONMENTAL SCIENCES (2023)

Article Chemistry, Analytical

Facile synthesis of Cu2+-immobilized magnetic covalent organic frameworks for highly efficient enrichment and sensitive determination of five phthalate monoesters from mouse plasma with HPLC-MS/MS

Akang Dan, Shasha Zhang, Zhongliang Chen, Jinghan Dong, Wenjun Zheng, Yuxin Tu, Zian Lin, Zongwei Cai

Summary: A simple and highly selective analytical method for phthalate monoesters (mPAEs) was developed using Cu2+-immobilized magnetic covalent organic frameworks. The method showed wide linear ranges, low limits of detection, and good correlation coefficients for the detection of mPAEs. The method was successfully applied to the sensitive detection of mPAEs in mouse plasma samples.

TALANTA (2023)

Article Chemistry, Multidisciplinary

Blocking Spatiotemporal Crosstalk between Subcellular Organelles for Enhancing Anticancer Therapy with Nanointercepters

Huiyan Li, Huilin Zhang, Xiaofang He, Peiran Zhao, Tong Wu, Jinxuan Xiahou, Yelin Wu, Yanyan Liu, Yang Chen, Xingwu Jiang, Guanglei Lv, Zhenwei Yao, Jian Wu, Wenbo Bu

Summary: A communication interception strategy is developed to block spatiotemporal crosstalk between lysosomes and endoplasmic reticulum (ER) using amorphous-core@crystalline-shell Fe@Fe3O4 nanoparticles (ACFeNPs). This strategy induces autophagy and ER stress, leading to a significant therapeutic effect for cancer treatment.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Unraveling the Oxidation Behaviors of MXenes in Aqueous Systems by Active-Learning-Potential Molecular-Dynamics Simulation

Pengfei Hou, Yumiao Tian, Yu Xie, Fei Du, Gang Chen, Aleksandra Vojvodic, Jianzhong Wu, Xing Meng

Summary: This study develops a neural network potential (NNP) for aqueous MXene systems using deep neural networks and an active learning scheme, providing ab initio precision at low cost. The oxidation behaviors of super large aqueous MXene systems are investigated at nanosecond timescales, revealing the atomic-level process of MXenes oxidation and the inhibitory effects of free protons and oxides on subsequent oxidation reactions. These findings contribute to the development of effective protection strategies for controlling the stability of MXenes.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Applied

Dyeing properties of polylactic acid fabric with disperse dyes of different structures using decamethylcyclopentasiloxane as non-aqueous media

Yinchun Fang, Jianguo Wu, Guojie Ma, Qufu Wei

Summary: Polylactic acid (PLA) fibre is a renewable and biodegradable synthetic polymer that has gained attention in textiles. However, its dyeing process faces challenges, and a waterless dyeing method using disperse dyes is being explored as an alternative. This study investigated the waterless dyeing of PLA fibre using different disperse dyes and decamethylcyclopentasiloxane (D5) as the medium. Optimal dyeing process conditions were determined, and it was found that disperse dyes with a monoazo structure were most suitable for PLA waterless dyeing. The research provides a basis for developing suitable dyes for waterless dyeing of PLA using D5.

COLORATION TECHNOLOGY (2023)

Article Engineering, Biomedical

3D Prestress Bioprinting of Directed Tissues

Yuanrong Li, Jianguo Wu, Chuanjiang He, Honghui He, Mingjun Xie, Ke Yao, Jing He, Yan Duan, Liujing Zhaung, Ping Wang, Yong He

Summary: Many mammalian tissues have specific cellular arrangements under stress stimulus, but conventional 3D encapsulation fails to replicate these arrangements accurately, so advanced cellular arrangement approaches are needed. In this study, a novel 3D prestress bioprinting approach is developed, using static sustained tensile stress, molecular chain orientation, and slow crosslinking in bioink to guide tissue construction. The semi-crosslinking state of the bioink provides excellent elasticity for applying stress on cells during the printing process. After printing, the bioink gradually crosslinks and maintains the applied stress force to induce cell-orientated growth. This approach allows for directional arrangement of multiple cell types, with adjustable internal stress in the hydrogel filament, and has potential applications in engineering skeletal muscles, tendons, ligaments, vascular networks, or combinations thereof.

ADVANCED HEALTHCARE MATERIALS (2023)

Article Engineering, Industrial

A deep mixed-effects modeling approach for real-time monitoring of metal additive manufacturing process

Ruiyu Xu, Song Huang, Zheren Song, Yuanyuan Gao, Jianguo Wu

Summary: This article proposes a deep mixed-effects modeling approach for anomaly detection in additive manufacturing. It captures the relationship between the melt pool temperature and other sensing data using a deep neural network, and incorporates random-effect and residual terms to account for variations and autocorrelations. Control charts based on T2 and generalized likelihood ratio statistics are developed for online monitoring.

IISE TRANSACTIONS (2023)

Article Environmental Sciences

Treated wastewater and weak removal mechanisms enhance nitrate pollution in metropolitan rivers

Guanghui Zhao, Taihu Sun, Dongqi Wang, Shu Chen, Yan Ding, Yilan Li, Guitao Shi, Hechen Sun, Shengnan Wu, Yizhe Li, Chenyang Wu, Yufang Li, Zhongjie Yu, Zhenlou Chen

Summary: This study used stable isotopes to investigate the sources and transformation processes of nitrate in Suzhou Creek. The results showed that treated wastewater, soil nitrogen, and nitrogen fertilizer were the main sources of nitrate in the river. Reducing nitrate concentrations in treated wastewater is crucial for addressing nitrogen pollution in urban rivers.

ENVIRONMENTAL RESEARCH (2023)

Article Engineering, Environmental

Occurrence and Fate of Substituted p-Phenylenediamine-Derived Quinones in Hong Kong Wastewater Treatment Plants

Guodong Cao, Wei Wang, Jing Zhang, Pengfei Wu, Han Qiao, Huankai Li, Gefei Huang, Zhu Yang, Zongwei Cai

Summary: para-Phenylenediamine quinones (PPD-Qs) are newly discovered transformation products derived from para-phenylenediamine (PPD) antioxidants. Their occurrence and fate in wastewater treatment plants (WWTPs) need further investigation to improve pollutant removal efficiency.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Geochemistry & Geophysics

Isotopic constraints on nitrate sources and cycling in Antarctic soils

Imali Kaushalya Herath, Guitao Shi, Qian Zhao, Yilan Li, Danhe Wang, Su Jiang, Yangjie Li, Zhenlou Chen, Roberto Bargagli

Summary: This study analyzed the sources and cycling of nitrate (NO3-) in Antarctic soils. The research found that NO3- concentrations and isotopic values were consistent across the latitudinal gradient, with the majority of NO3- derived from nitrification process. Atmospheric deposition contributed minimally to the NO3- budget, and there was evidence of denitrification and cycling between NO3- and nitrite (NO2-). These findings provide new insights into the nitrogen cycle in Antarctic terrestrial ecosystems.

GEOCHIMICA ET COSMOCHIMICA ACTA (2023)

Review Engineering, Biomedical

Advances in the Development of Granular Microporous Injectable Hydrogels with Non-spherical Microgels and Their Applications in Tissue Regeneration

Haiyan Li, Keerthi Subramanian Iyer, Lei Bao, Jiali Zhai, Jiao Jiao Li

Summary: Granular microporous hydrogels made of non-spherical microgels show enhanced characteristics compared to traditional nanoporous hydrogels, promoting cell viability, migration, and tissue regeneration. These hydrogels have higher macroporosity and improved mechanical properties, allowing for better alignment and differentiation of cells in anisotropic tissue. The development of these hydrogels is gaining increasing interest in regenerative medicine.

ADVANCED HEALTHCARE MATERIALS (2023)

Review Biochemistry & Molecular Biology

Succinate as a signaling molecule in the mediation of liver diseases

Hui Chen, Cheng Jin, Li Xie, Jian Wu

Summary: Succinate, an intermediate of the TCA cycle, is crucial in mitochondrial metabolism, energy production, and is also considered a signaling molecule in metabolism and hepatic diseases. Its downstream signaling pathway through GPR91 leads to various intracellular responses, including succinylation, ROS production, HIF-1 alpha stabilization, and significant impact in cellular metabolism due to its role in the TCA cycle. Understanding the signaling mechanisms of succinate in hepatic fibrosis, metabolic reprogramming, inflammatory or immune responses, and carcinogenesis is of great interest. This review aims to provide the current understanding of succinate in mediating metabolism, inflammatory and immune responses in liver diseases, with the aim of establishing a molecular basis for therapeutic strategies.

BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE (2024)

Article Mathematics, Applied

Multi-cycle Periodic Solutions of a Differential Equation with Delay that Switches Periodically

Marco Tosato, Xue Zhang, Jianhong Wu

Summary: We investigate the behavior of solutions to a scalar Delay Differential Equation (DDE) with periodic switching between two constant values. This equation naturally arises in structured vector populations involved in the spread of various vector-borne diseases in a periodically changing environment. We examine the influence of two different time lags and the switching time on the existence and patterns of periodic solutions, with a specific focus on multi-cycles within the prime period.

DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS (2023)

No Data Available