4.7 Article

Multitemporal Spaceborne SAR Data for Urban Change Detection in China

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTARS.2012.2201135

Keywords

Change detection; ENVISAT ASAR; ERS-2 SAR; minimum-error thresholding; modified ratio; multitemporal; urbanization

Funding

  1. Swedish National Space Board

Ask authors/readers for more resources

The objective of this research is to examine effective methods for urban change detection using multitemporal spaceborne SAR data in two rapid expanding cities in China. One scene of ERS-2 SAR C-VV image was acquired in Beijing in 1998 and in shanghai in 1999 respectively and one scene of ENVISAT ASAR C-VV image was acquired in near-anniversary dates in 2008 in Beijing and Shanghai. To compare the SAR images from different dates, a modified ratio operator that takes into account both positive and negative changes was developed to derive a change image. A generalized version of Kittler-Illingworth minimum-error thresholding algorithm was then tested to automatically classify the change image into two classes, change and no change. Various probability density functions such as Log normal, Generalized Gaussian, Nakagami ratio, and Weibull ratio were investigated to model the distribution of the change and no change classes. The results showed that Kittler-Illingworth algorithm applied to the modified ratio image is very effective in detecting temporal changes in urban areas using SAR images. Log normal and Nakagami density models achieved the best results. The Kappa coefficients of these methods were of 0.82 and 0.71 for Beijing and Shanghai respectively while the false alarm rates were 2.7% and 4.75%. The findings indicated that the change accuracies obtained using Kittler-Illingworth algorithm vary depending on how the assumed conditional class density function fits the histograms of change and no change classes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available