4.7 Article

A Holistic View on Hyper-Dense Heterogeneous and Small Cell Networks

Journal

IEEE COMMUNICATIONS MAGAZINE
Volume 51, Issue 6, Pages 20-27

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/MCOM.2013.6525591

Keywords

-

Ask authors/readers for more resources

The wireless industry has been experiencing an explosion of data traffic usage in recent years and is now facing an even bigger challenge, an astounding 1000-fold data traffic increase in a decade. The required traffic increase is in bits per second per square kilometer, which is equivalent to bits per second per Hertz per cell x Hertz x cell per square kilometer. The innovations through higher utilization of the spectrum (bits per second per Hertz per cell) and utilization of more bandwidth (Hertz) are quite limited: spectral efficiency of a point-to-point link is very close to the theoretical limits, and utilization of more bandwidth is a very costly solution in general. Hyper-dense deployment of heterogeneous and small cell networks (HetSNets) that increase cells per square kilometer by deploying more cells in a given area is a very promising technique as it would provide a huge capacity gain by bringing small base stations closer to mobile devices. This article presents a holistic view on hyper-dense HetSNets, which include fundamental preference in future wireless systems, and technical challenges and recent technological breakthroughs made in such networks. Advancements in modeling and analysis tools for hyper-dense HetSNets are also introduced with some additional interference mitigation and higher spectrum utilization techniques. This article ends with a promising view on the hyper-dense HetSNets to meet the upcoming 1000x data challenge.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available