4.7 Article

Transformation of red mud from aluminium industry into a coagulant for wastewater treatment

Journal

HYDROMETALLURGY
Volume 92, Issue 1-2, Pages 16-25

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.hydromet.2008.02.004

Keywords

red mud; coagulant; aluminium; iron; phosphorus removal; alum; ferric chloride; wastewater treatment

Ask authors/readers for more resources

Red mud is a waste produced in very large quantities by the aluminium industry. This study relates to a process of transformation of red mud, by treatment in acid and saline medium, into a concentrated liquid or solid but Soluble product, containing high amounts of Al and Fe that is usable as a coagulant for water/wastewater treatment. The optimal conditions for the production of liquid or solid coagulant include the treatment of red mud pulp(20% w/v) using 1765 kg H2SO4/ton of treated red mud (trm) and 469 kg NaCl/trm at 110 degrees C for 2 h. Under these conditions, final extraction and recovery yields of 75% Fe and 74% Al from red mud were measured by analyzing the solid coagulant (after water evaporation). Production rates of 222 kg Fe/trm and 78.9 kg Al/trm were measured during production of the solid coagulant. X-ray diffraction analysis revealed that this solid coagulant is mainly made up of NaFe(SO4)(2), NaHSO4 and Al5Cl3(OH)(12)center dot 2H(2)O. Finally, precipitation tests using synthetic solutions have shown that the solid coagulant produced from red mud has a phosphorus removal capacity similar to commercial coagulants (alum, ferric sulfate, ferric chloride). (c) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Metallurgy & Metallurgical Engineering

Strategy for possible separation of light rare earth elements (La, Ce, Pr, Nd) from synthetic chloride solutions by oxidative precipitation, solvent extraction and stripping

Arsyad Maulana Dzulqornain, Ana Belen Cueva-Sola, Kyeong Woo Chung, Jin-Young Lee, Rajesh Kumar Jyothi

Summary: This study presents a hydrometallurgical process for the separation of light rare earth elements (LREEs) using oxidation, precipitation, solvent extraction, and stripping techniques. Selective oxidation with potassium permanganate was employed for the separation of cerium (III). Solvent extraction with Cyanex 572 and cross-current scrubbing were used to achieve the separation of lanthanum (III) from neodymium (III) and praseodymium (III).

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Effects of key impurities (Al, Fe, P, Si and Na) on the precipitation process of vanadium in the novel ultrasound-assisted precipitation system

Bo Chen, Shenxu Bao, Yimin Zhang

Summary: This study investigated the effects of Al, Fe, P, Si and Na on the precipitation characteristics of vanadium in the ultrasound precipitation system. The concentration upper limits and the negative influence on the precipitation kinetics were determined for each impurity. The findings provide theoretical and technical support for the industrial application of ultrasound precipitation technology.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Highly selective separation of germanium from sulfuric solution using an anion exchange D201 x 7 resin with tartaric acid

Chunlin He, Mingwei Qi, Yun Liu, Zunzhang Liu, Yuezhou Wei, Toyohisa Fujita, Guifang Wang, Shaojian Ma, Wenchao Yang, Junyuan Gan

Summary: In this study, D201 x 7 resin and tartaric acid were used as materials and complexing agents for the separation of germanium from sulfuric acid solution. The study successfully achieved the separation of germanium and demonstrated the high selectivity and adsorption performance of the resin.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Effective separation of V(IV) and Fe(III) from sulfuric acid solution by solvent extraction with P507 and N235

Xiaobo Zhu, Yue Liu, Chen Ma, Wang Li

Summary: A selective and highly effective method for the extraction and separation of V(IV) and Fe(III) using N235 and P507 as solvent extractants is proposed. The pH, composition, and concentration of the extractant mixture have significant effects on the extraction efficiency and separation factor. The mixing of P507 and N235 generates the P507 monomer, which enhances the extraction efficiency and weakens the stability of vanadium containing extraction complex. Cation exchange process forms the extraction complexes.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Molecular dynamic (MD) simulation and density function theory (DFT) calculation relevant to green leaching of metals from spent lithium-ion battery cathode materials using glucose-based deep eutectic solvent (DES)

B. Behnajady, J. Yousefi Seyf, S. Karimi, M. Moradi, M. Sohrabi

Summary: Deep eutectic solvents (DES) have potential as environmentally-friendly solvents for recovering metals from spent lithium-ion batteries (LIBs). Experimental and molecular dynamics simulation results showed that the chloride ions in DES can form complexes with lithium, manganese, and nickel ions, facilitating their extraction.

HYDROMETALLURGY (2024)

Review Metallurgy & Metallurgical Engineering

On the path of recovering platinum-group metals and rhenium: A review on the recent advances in secondary-source and waste materials processing

Sebastian Kinas, Dorota Jermakowicz-Bartkowiak, Anna Dzimitrowicz, Piotr Cyganowski

Summary: The high demand for platinum-group metals (PGMs) and Re in economical and industrial applications related to environmental protection and energy conversion/storage has led to resource scarcity. Thus, it is crucial to recover and recycle these rare metals. This study critically reviews the recent progress in the effective recovery of PGMs and Re from materials relevant to sustainable technologies, emphasizing practical aspects, environmental impact, and issues related to the unit processes of recovery.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

A clean ammonia-free vanadium recovery process for titanium-white waste using D2EHPA extraction, hydrogen peroxide stripping, precipitation and calcination to produce V2O5

Guopeng Yang, Qinggang Li, Guiqing Zhang, Mingyu Wang, Zuoying Cao, Wenjuan Guan, Jiawei Du, Shengxi Wu

Summary: The study proposes an efficient, clean, and economical process for recovering V2O5 from titanium-white waste through hydrogen peroxide stripping and precipitation of vanadium products by heating. Experimental results show that the use of D2EHPA as a modifier prolongs the duration of maximum stripping efficiency, enabling continuous operation.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Recovery of rare earth metal oxides from NdFeB magnet leachate by hydrophobic deep eutectic solvent extraction, oxalate stripping and calcination

Guisu Yu, Shuainan Ni, Yun Gao, Ditang Mo, Zhiyuan Zeng, Xiaoqi Sun

Summary: This research proposes a novel green process for the selective recovery of rare earth elements (RE) from spent NdFeB permanent magnet using hydrophobic deep eutectic solvent (HDES). Through optimization of extraction conditions and stripping method, efficient and clean separation and recovery have been achieved.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

A near-zero waste process for the full-component utilization of deep-sea polymetallic nodules based on reductive leaching with SO2 followed by separation and recovery

Jia Li, Xinsheng Wu, Xiaozhou Zhou, Li Zeng, Shengxi Wu, Mingyu Wang, Wenjuan Guan, Zuoying Cao, Qinggang Li, Guiqing Zhang

Summary: This paper presents a complete hydrometallurgical route for the full-component utilization of deep-sea polymetallic nodules (DPN), achieving high recovery efficiency and near-zero waste production with low energy consumption.

HYDROMETALLURGY (2024)

Article Metallurgy & Metallurgical Engineering

Analysis of the dissolution of phosphate ore particles in phosphoric acid: Influence of particle size distribution

Sanae Elmisaoui, Abderrazak M. Latifi, Lhachmi Khamar

Summary: A first principles model is developed to describe the dissolution mechanism of phosphate ore particles in a solution of phosphoric acid. The model accounts for non-uniform size of ore particles using particle size distributions and quantifies their influence on the model predictions. A global estimability analysis is carried out to determine the estimable parameters from experimental data, and the predictions show good agreement with the experimental data. The computed activation energy indicates that diffusion is the rate limiting step of the dissolution process.

HYDROMETALLURGY (2024)