4.6 Article

Evolution of predator avoidance in a Daphnia population: evidence from the egg bank

Journal

HYDROBIOLOGIA
Volume 700, Issue 1, Pages 245-255

Publisher

SPRINGER
DOI: 10.1007/s10750-012-1234-6

Keywords

Ephippia; Egg bank; Daphnia; Kairomones; Phototactic behavior

Funding

  1. Hamline University Lund Fund
  2. National Science Foundation (DIGG Grant) [0105009]
  3. Division Of Environmental Biology
  4. Direct For Biological Sciences [0105009] Funding Source: National Science Foundation

Ask authors/readers for more resources

Dormant propagule pools (egg banks) of zooplankton populations that accumulate in sediments provide biological archives of past conditions and enable the investigation of evolutionary changes in populations over relatively long periods of time (many decades). This study examined the egg bank of a Daphnia pulicaria population in a lake that has been stocked annually with rainbow trout (a zooplanktivore) since 1961. Resting eggs from sediments from the 1920s to 2001 (determined by Pb-210 dating) were hatched and established as isofemale clonal lines. The phototactic behavior (a proxy for vertical migration behavior) of clones was assessed in the presence and absence of fish kairomones to evaluate the hypothesis that the heavy and consistent level of predation imposed by the stocked trout would have selected for clones that are more negatively phototactic. In addition, exposure to kairomones was expected to induce stronger negative phototaxis for all clones relative to control conditions. The behavior of clones derived from resting eggs from the trout era (after 1961) was significantly more negatively phototactic than it was for pre-trout era clones. Kairomone exposure induced a more negative phototactic response in clones from both eras, but the response was much greater for the pre-trout era clones. These results suggest that the consistently high level of predation by trout over several decades has selected for a conservative (less plastic) vertical migration strategy in which Daphnia maintain a deep daytime distribution with or without the presence of chemical cues from fish predators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available