4.5 Article

Low p14ARF expression in neuroblastoma cells is associated with repressed histone mark status, and enforced expression induces growth arrest and apoptosis

Journal

HUMAN MOLECULAR GENETICS
Volume 22, Issue 9, Pages 1735-1745

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddt020

Keywords

-

Funding

  1. European Union [037260, 259348]
  2. German Bundesministerium fur Bildung und Forschung [0316076A, 01GS0896, 01GS0895]

Ask authors/readers for more resources

The TP53 tumor suppressor pathway is abrogated by TP53 mutations in the majority of human cancers. Increased levels of wild-type TP53 in aggressive neuroblastomas appear paradox but are tolerated by tumor cells due to co-activation of the TP53 ubiquitin ligase, MDM2. The role of the MDM2 antagonist, p14(ARF), in controlling the TP53-MDM2 balance in neuroblastoma is unresolved. In the present study, we show that conditional p14(ARF) expression substantially suppresses viability, clonogenicity and anchorage-independent growth in p14(ARF)-deficient or MYCN-amplified neuroblastoma cell lines. Furthermore, ectopic 14(ARF) expression induced accumulation of cells in the G1 phase and apoptosis, which was paralleled by accumulation of TP53 and its targets. Comparative genomic hybridization analysis of 193 primary neuroblastomas detected one homozygous deletion of CDKN2A (encoding both p14(ARF) and p16(INK4A)) and heterozygous loss of CDKN2A in 22 of tumors. Co-expression analysis of p14(ARF) and its transactivator, E2F1, in a set of 68 primary tumors revealed only a weak correlation, suggesting that further regulatory mechanisms govern p14(ARF) expression in neuroblastomas. Intriguingly, analyses utilizing chromatin immunoprecipitation revealed different histone mark-defined epigenetic activity states of p14(ARF) in neuroblastoma cell lines that correlated with endogenous p14(ARF) expression but not with episomal p14(ARF) promoter reporter activity, indicating that the native chromatin context serves to epigenetically repress p14(ARF) in neuroblastoma cells. Collectively, the data pinpoint p14(ARF) as a critical factor for efficient TP53 response in neuroblastoma cells and assign p14(ARF) as a neuroblastoma suppressor candidate that is impaired by genomic loss and epigenetic repression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available