4.2 Article

Tunneling nanotubes enable intercellular transfer of MHC class I molecules

Journal

HUMAN IMMUNOLOGY
Volume 74, Issue 4, Pages 412-416

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.humimm.2012.11.026

Keywords

-

Categories

Funding

  1. Helmholtz Zentrum Munchen PhD Program, Research Field Infection and Immunity

Ask authors/readers for more resources

Carefully orchestrated intercellular communication is an essential prerequisite for an effective immune response. In recent years tunneling nanotubes (TNT) have emerged as a novel mechanism of cell-cell communication. These long membrane protrusions can establish cytoplasmic continuity between distant cells and enable the exchange of cellular components. In the present study we addressed the question whether these structures can facilitate the intercellular transfer of MHC class I molecules. We found a transmembrane HLA-A2-EGFP but not a soluble HLA-G1s-EGFP fusion protein to be effectively transferred between HeLa cells. Inhibition of actin polymerization significantly reduced the HLA-A2 transfer rate, indicating that transfer is dependent on tunneling nanotubes, whose de novo formation requires actin polymerization. Furthermore, overexpression of the nanotube-inducing protein LST1 promoted transfer of HLA-A2. Moreover, LST1 protein expression is enhanced in antigen presenting cells. Our results indicate that tunneling nanotubes can mediate transfer of MHC class I molecules between distant cells. (C) 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available