4.2 Article

Receptor-mediated endocytosis of particles by peripheral dendritic cells

Journal

HUMAN IMMUNOLOGY
Volume 69, Issue 10, Pages 625-633

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.humimm.2008.07.010

Keywords

Peripheral dendritic cells; Receptor-mediated; Endocytosis; Dealuminated zeolite Y

Categories

Ask authors/readers for more resources

Human peripheral dendritic cells (DCs) are antigen-presenting cells with the ability to internalize antigen and present antigen-derived peptides to T cells. Human DCs express several receptors on the surface for endocytosis and other recognition receptors that bind to microbes or microbial products, which are internalized and processed. Here, we report the use of nanometer-size zeolite particles as a tool to study receptor-mediated endocytosis by the two subsets of immature DCs, myeloid (mDC) and plasmacytoid (pDC) dendritic cells. A major difference in receptor-mediated endocytosis was observed between the two populations of peripheral DCs. The pDC population demonstrated an almost complete lack of receptor-mediated endocytosis of zeolite particles, whereas the mDC population demonstrated a clear receptor-mediated endocytosis. Fc receptors are expressed by both peripheral DC populations and lipoteichoic acid (LTA) and lipopolysaccharide (LPS) are known ligands of the Toll-like receptor (TLR)-2 and TLR4, respectively, both TLRs expressed by human mDCs. An efficient receptor-mediated endocytosis of immunoglobulin G-, LTA-, and LPS-coated zeolite particles was observed by the mDC population and their endocytosing capacity depended strongly on the density of the ligand adsorbed onto the zeolite particles. In conclusion, an efficient receptor-mediated endocytosis was observed from the mDC population, whereas the pDCs demonstrated an almost complete lack of receptor-mediated endocytosis and nanometer-size dealuminated zeolite particles were a useful toot for studying receptor-mediated endocytosis in human peripheral DCs. (c) 2008 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available