4.5 Article

Innovative DNA Vaccine to Break Immune Tolerance Against Tumor Self-Antigen

Journal

HUMAN GENE THERAPY
Volume 24, Issue 2, Pages 181-188

Publisher

MARY ANN LIEBERT INC
DOI: 10.1089/hum.2012.141

Keywords

-

Funding

  1. National Institutes of Health Cervical Cancer SPORE and Head and Neck Cancer SPORE [P50 CA098252, P50 CA96784-06]
  2. RO-1 grant [CA114425-01]
  3. Melanoma Research Alliance

Ask authors/readers for more resources

Vaccination is, in theory, a safe and effective approach for controlling disseminated or metastatic cancer due to the specificity of the mammalian immune system, yet its success in the clinic has been hampered thus far by the problem of immune tolerance to tumor self-antigen. Here we describe a DNA vaccination strategy that is able to control cancer by overcoming immune tolerance to tumor self-antigen. We engineered a DNA construct encoding a dimeric form of a secreted single-chain trimer of major histocompatibility complex class I heavy chain, beta 2-microglobulin, and peptide antigen linked to immunoglobulin G (SCT-Ag/IgG). The chimeric protein was able to bind to antigen-specific CD8(+) T cells with nearly 100% efficiency and strongly induce their activation and proliferation. In addition, the chimeric protein was able to coat professional antigen-presenting cells through the F-c receptor to activate antigen-specific CD8(+) T cells. Furthermore, intradermal vaccination with DNA-encoding SCT-Ag/IgG could generate significant numbers of cytotoxic effector T cells against tumor self-antigen and leads to successful therapeutic outcomes in a preclinical model of metastatic melanoma. Our data suggest that the DNA vaccine strategy described in the current study is able to break immune tolerance against endogenous antigen from melanoma and result in potent therapeutic antitumor effects. Such strategy may be used in other antigenic systems for the control of infections and/or cancers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available