4.7 Article

Brain Network of Semantic Integration in Sentence Reading: Insights From Independent Component Analysis and Graph Theoretical Analysis

Journal

HUMAN BRAIN MAPPING
Volume 35, Issue 2, Pages 367-376

Publisher

WILEY
DOI: 10.1002/hbm.22182

Keywords

sentence comprehension; semantic integration; independent component analysis; graph theoretical analysis; fMRI

Funding

  1. China Scholarship Council
  2. DFG
  3. BMBF

Ask authors/readers for more resources

A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings. Hum Brain Mapp 35:367-376, 2014. (c) 2012 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available